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Abstract 

 
  Prior beliefs concerning malaria, transmission θ may be approximately modeled by a conjugate prior 

distribution π for optimally forecasting, hyperproductive, seasonal, malaria, mosquito, capture point, geolocations 

especially when X = (X1,…,Xp). Exploiting linearizability of capture point, aquatic, larval habitat, signature frequencies 

employing a p-variate normal distribution with an unknown mean vector θ = (θ1,…,θp) may reveal  covariates 

associated with prolific seasonal foci. Further, an expectation of a random matrix Σ may  statistically define an 

inferential dataset of wavelength, land use land cover (LULC), iteratable, signature,capture point prognosticators whose 

element in the i, j position could be the covariance between the i 
th

 and j 
th

elements of a regressively elucidative, 

multivariate, random sequence, (e.g. a random tree, stochastic process, etc).  In so doing, asymptotic properties of the 

matrix may reveal interpolative, LULC, properties which may  reveal unknown, prolific,  malaria, mosquito, aquatic, 

larval habitat geolocations by asymptotically expressing a capture point as a  sequence of homoscedastic, scalar, 

krigable frequencies. Subsequently, the capture point, aquatic, larval habitat, sub-pixel signatures may  stochastically, or 

deterministically, geo-spectrotemporally  identify geolocations of un-geosampled, eco-georeferenceable, seasonal, 

hyperproductive, malaria, mosquito, capture points.We constructed an ento-endmember,  multinomial, aquatic, larval, 

habitat, sub-meter resolution, geoclassifiable, LULC signature, frequency dataset of  grid-stratified, quantile, 

distribution estimators which were tabularized employing a likelihood-free, Bayesian treatment for determining eco-

georeferenecable, unknown, hyperproductive, malaria, mosquito, capture point, foci eigenvectors  from an algorithmic, 

semi-parametric, autocorrelation, spatial filter,orthogonal, eigenfunction decomposition algorithm. Subsequently a 

probabilistic matrix factorization was performed in which model capacity was controlled automatically by integrating 

over all the model hyperparameters for deducing capture point, Gaussian, LULC priors for identifying unknown,  

hyperproductive, aquatic, larval habitats of Anopheles arabiensis s.s., a malaria, mosquito vector, in Karima agro-village 

complex in the Mwea Rice Scheme in central Kenya. We considered an observation model of the form z (x) = y (x) + σ 

[y (x)] ξ (x), x ∈ X where X was the set of the sub-meter resolution, sensors, active, pixel positions, z was the actual raw 

LULC, signature, frequency capture point,  aquatic,larval habitat, data output, y was the ideal output, ξ was zero-mean 

random noise with standard deviation (std) equal to 1, and σ was a function y, modulating the std of the overall noise 

component. The function σ (y) was the std function while σ2 (y) was the variance function. Since E {ξ (x)} = 0 we had 

E {z (x)} = y (x) and std {z (x)} = σ (E {z (x)}). There were no additional restrictions on the distribution of ξ (x), and 

different capture points were revealed with different distributions. A preference matrix described each habitat signature 

entry Rij, to find a factorization that minimized the root mean squared error on the test set. We defined Iij to be 1, 

if Rij was known (i.e., larval habitat i had an eco-endmember scatterplot j) and 0 otherwise in the model derivatives. 

Further, we let  N(x|μ,σ2)=fX(x) with X∼N(μ,σ2)X∼N(μ,σ2).Accordingly, we quantitatively defined  a conditional 

probability of the ratings 

with hyperparameter σ2p(R|U,V,σ2)=∏i=1N∏j=1M[N(Rij|UiTVj,σ2)]Iij(1)and priors on U and V with 

hyperparameters σU2,σV2p(U|σU2)=∏i=1NN(Ui|0,σU2I) and p(V|σV2)=∏i=1MN(Vi|0,σV2I). In the model estimator 

dataset, y  maximized the log posterior over U and V where a substitute  for the definition of N was explicated by  

taking the log[i.e., lnp(U,V,σ2,σ2V,σ2U)].Henceforth,  

12σ2∑i=1N∑j=1MIij(Rij−UiTVj)2−12σU2∑i=1NUiTUi−12σV2∑i=1NViTVi−12(κlnσ2+NDlnσ2U+MDlnσ2V)+C(3)

−12(κln⁡σ2+NDln⁡σU2+MDln⁡σV2)+C(3) was rendered where κ was the number of known, eco-georeferenceable, 

capture point,  signature entries and C was a constant independent of the  ento-endmember,LULC,  geosampled, 

parameterizable estimators. We adjusted the three variance hyperparameters (which were observation noise variance and 

prior variances) as constants which reduced the optimization to the first three terms (i.e., a sum-of-squared 

minimization). Then defining λM=σ2/σM2 for M=U,V and multiplying by −σ2<0 resulted in the following objective 

function E=12(∑i=1N∑j=1MIij(Rij−UiTVj)2+λU∑i=1N‖Ui‖F2+λV∑i=1M‖Vi‖F2)where ∥A∥2F=∑mi=1∑nj=1|aij|2‖ 

whence F2=∑i=1m∑j=1n|aij|2 was the Frobenius norm. Since all the uncoalesceable, interpolative, signature, 

wavelength, iterable, habitat values were known [i.e.  Iij=1∀(i,j) ], σU2,σV2→∞ was reduced to  a singular value 

decomposition.The objective function, was then minimized employing the method of steepest descent which was 

linearizable based on the geosampled habitat observations. The dot product specific feature vectors were passed through 

the logistic function g(x)=1/[1+exp(−x)] which bounded the range of habitat signature predictions.We  employed a 

simple linear-Gaussian model which  revealed  vulnerability explanative  forecasts outside of the range of the known 

capture point values. As well, the ratings from 1 to K were mapped to the [0,1] interval employing the 
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function t(x)=(x−1)/(K−1). This ensured that the range of the interpolatable, habitat, LULC frequencies matched the 

range of predictions made by the model. Thus, p(R|U,V,σ2)=∏Mi=1∏Nj=1[N(Rij|g(UTiVj)σ2)]. Proprieties of the 

posterior distribution in the model, integrated the observed, Anopheles data conditioned on a categorical, outcome 

variable (i.e., immature, seasonal, frequency, density count). A generative model was devised where 

b∼N(0,σb)a∼N(0,σW)zn∼ (W)xn∼p(⋅|β,zn)tn∼Weibull[log(1+exp(z
T
na+b)]k. The latent input zi came from a 

geosampled, An. arabiensis, capture point, regressable, LULC explicator. The seasonal, immature habitat, likelihood 

distribution was p(t|x)=∫zp(t|z)p(z|x)dz which  accounted for all the  noise in the sub-pixel, LULC, eco-endmember, 

signature, frequency paradigm employing the Bayes’ theorem.  In particular, a sequential Monte Carlo (SMC) algorithm 

that was adaptive in nature approximated a cloud of weighted, random, hyperproductive, seasonal, eco-

georeferenceable, capture point samples which were subsequently propagated over time. Quantile distributions were 

constructed based on a copula from the iterative, Bayesian, computation algorithms. An informative prior was 

generated. A recognition algorithm expressed signature habitat images in terms of orthogonal two dimensional 

Gaussian-Hermite moments (2D-GHMs). Motivation for developing 2D-GHM-based recognition algorithm here 

included capturing higher-order, hidden, nonlinear, 2D structures within the LULC images while quantitating the 

invariance of certain linearized combinations of the moments to the geometric distortions in the capture point, grid-

stratified images. The 2D-GHMs based on a set of orthonormal polynomials captured rotation and translation invariants 

in the frequency LULC model which proved that the construction forms of geometric moment invariants were valid in 

the linearized combinations. The moments stored the image information with minimal redundancy.  A function was 

defined on an inner product space which possessed the rotation-invariant property. Since the moments were definable on 

the continuous domain, suitable transformations of the eco-endmember, An. arabiensis, capture point foci were needed 

to regressively quantitate these moments. Besides the discretization error derived from the approximation of various 

integrals, the inevitable uncertainty in the vulnerability forecasts were reconstructed with binary and gray-level, LULC, 

habitat images. The obtained results revealed the quality from Gaussian-Hermite moments were superior to known 

Legendre, discrete Tchebichef and Krawtchouk moments. Habitat properties of the modified, capture point, LULC, 

polynomials, specifically orthogonality and orthogonal invariance revealed an interval on the center of [-1,1] covered 

more zeros than did that on the edge of [-1,1]. A set of octiles was trialed as well as functions which exposed the 

unknown, hyperproductive, capture point, LULC geolocations with all symmetrical values (e.g. uncorrelatedness, scale, 

skewness and kurtosis) accounted for. The summary statement revealed a broad range of temporal trend derivatives in 

both the mean and variance. A computation of the probability of inclusion from the SMC output was specified. Variable 

selection was applied to the lags in the simulation, making it possible to infer the lag order from the regressed, capture 

point, aquatic, larval habitat, signature, frequency, count data simultaneously with all the other geosampled wavelength 

estimators. The Fisher information matrix for a two-parameter gamma distribution revealed  un-geosampled, 

hyperproductive, An. arabiensis, seasonal, capture point, aquatic, larval habitat, LULC, descriptors employing  

 Sums and differences of  for small integral r  and s were  frugally  extractable  in terms of  

t k and . For 

example, , , , ,

, , , and  Here, the Fisher 

information matrix was I(θ)= trigamma(α)−1/λ −1/λ α/λ
2
.Its determinant revealed| I(θ)| trigamma(α)−1/λ −1/λ α/λ

2
=α 

trigamma(α) − 1 λ
2
 and the Jeffreys prior was articulated as g(α, λ)=p α trigamma(α) – 1 whence g was the Catalan's 

constant which we approximated in the malaria, mosquito model by . The   probability distribution  

revealed capture point signature, eco-endmember, frequency, gridde, LULC data conditional on a particular, discrete, 

aquatic, larval habitat, frequency, density, count value which was optimally devisable  by Np(μ, A), whence μ and A 

were normalized. It may be desirable to estimate θ under the quadratic loss L (θ, δ) = (θ − δ)tQ(θ − δ) whence 

regressively forecasting grid-stratifiable, malaria, mosquito, capture point, sub-meter resolution, sub-pixel,  

robustifiable, LULC, interpolative covariates for precisely asymptotically geo-spectrotemporally, targeting un-

geosampled, hyperproductive, eco-georeferenceable, seasonal foci. Sequential estimation of iteratable, ento-

endmember,topological, prognosticators   of unknown, seasonal, capture point, An. arabiensis foci may reveal  risk 

factors  to malaria transmission based on eigen-decomposable, sub-pixel,   grid-stratifiable, geoclassifiable, 

LULC,signature, frequency co-factors (e.g., Euclidean distance of an eco-georeferenced, seasonal, prolific, agro-

irrigated, African, riceland, aquatic, larval habitat, capture point to the nearest, remotely calculable, agro-village, 

https://en.wikipedia.org/wiki/Bayes%E2%80%99_theorem
http://mathworld.wolfram.com/CatalansConstant.html
https://en.wikipedia.org/wiki/Catalan%27s_constant
https://en.wikipedia.org/wiki/Catalan%27s_constant
https://en.wikipedia.org/wiki/Conditional_probability_distribution
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centroid), unless the geosampled count sequence is considered  a realization of a random, zero-mean autocorrelated,  

diagnostic, capture point variable. Intuitively, main effects and interaction explicators  quantized from an eco-

endmember,  eigenfunction, eigendecomposable, spatial filter, eigenvector An. arabiensis,  vulnerability regression 

equation  may satisfy the constraint R(θ, δ) ≤ tr(QΣ) + c, R(θ, δ). Although employing prime computing ratios of 

normalizing constants in common measurable geospace can define correlation and non-orthogonality in such frequency 

paradigms, the residuals may not equate to causality in any krigeable, LULC, signature, frequency dataset of   synthetic, 

capture point, orthogonal,capture point eigenvectors.Maximizing the log-posterior over an  empirical  uncoalesced, eco-

entomological, geoclassifiable, eco-endmember LULC dataset of eco-georeferenceable, seasonal, frequency, capture 

point, non-negatively autorrelated, sub-meter resolution, An. arabiensis, geosampled,  geo-spectrotemporal, attribute 

features with hyperparameters (i.e. the observation noise variance and prior variances) and simulating the data in 

probability space may minimize the sum-of-squared-errors objective function employing quadratic regularization terms 

for prevention of overfitting. Here a parallelizable expectation-maximization algorithm was constructed which we found 

applicable to large-scale, sub-meter resolution, grid-stratifiable, capture point, seasonal, malaria, mosquito, aquatic, 

larval, habitat, eco-epidemiological, uncertainty, risk, mapping applications.  Regardless, our main result in this research 

is that an Lipschitz map quantitated between separable quasi-Banach spaces is Fréchet differentiable Γ-almost 

everywhere in an  eco-endmember, sub-meter resolution, geoclassifiable, georeferenceable, An arabenisis, grid-

stratifiable, capture point, geo-spectrotemporal, signature,  frequency, prognosticative, LULC model provided that it is 

regularly Gˆateaux differentiable Γ-almost everywhere in the model and the derivatives stay within a norm separable 

space of operators. It is easy to see that wavelength, capture point, seasonal, malaria, mosquito, sub-pixel, interpolatable, 

signature, risk maps with the Radon-Nikodym property are Gˆateaux differentiable Γ. Moreover, Gˆateaux 

differentiability implies regular Gˆateaux differentiability with exception of another kind of negligible sets, (i.e., σ-

porous sets). An eco-georeferenceable, seasonal, hyperproductive, capture point, sub-meter resolution, An. arabiensis, 

LULC, prognosticative, signature, frequency model is positive in every space in which every σ-porous sub-set is Γ-null. 

We show that this holds for C(K) with K countable compact, the Tsirelson space and for all subspaces of c0, but that it 

fails for Hilbert spaces.  

 

Keywords: Anopheline arabiensis, trigamma(α), Gaussian-Hermite moments,  Bayesian, Lipschitz map Fr´echet 

differentiable Gˆateaux differentiability.  

 

Introduction 

 Unbiasedly, geo-spectrotemporally regressing sub-meter resolution, land use land cover (LULC), 

parameterizable, wavelength estimator datasets of  malaria, mosquito,  aquatic, larval habitat, eco-endmember, 

signature descriptors [e.g., visible an near infra-red (NIR) reflectance, capture point covariates] rest on four principal 

assumptions which justify the usage of  frequentism for optimally prognosticating, geolocations of un-geosampled, 

hyperproductive, seasonal foci: (i) the coefficient of determination, (R
2
 ) can   reveal  the proportion of the variance in 

the dependent variable (e.g., monthly, tabulated, malaria prevalence for  an agro-irrigated, African, riceland, agro-

village, ecosystem)  from the endemic, emissivity-oriented and field geosampled, topological variables (ii) optimization 

of the independence of the discretization errors or the serial correlation will indicate an immature, habitat, Gaussian 

distribution; and, (iii) constant variance is expressable in the probability distribution in the formulated data.  

For example, suppose there is an n, empirical, normalized, uncoalesced,  dataset of  ento-endmember, LULC, 

signature, ,geosampled, malaria, mosquito, seasonal, capture point,   frequencies (e.g., discontinuously, canopied, 

hyperproductive, aquatic, larval, habitat, NIR density, count values), {yi,xi}which are  employed as independent 

variables in an oviposition, linear,  sub-meter resolution, forecast, vulnerability  model where i=1,2,…,ni=1,2,…,n. 

Normalizations in ento-epidemiological, signature, LULC models include quantitating non-dimensional ratios of errors,  

devising residuals, scaling invariant means and standard deviations, eliminating effects of certain gross influences 

(e.g.,anomalous  time series),procuring probability density functions and assessing percentiles[1]. Regressively, 

quantitatively interpolating an empirical dataset of multivariate, geosampled, signature, malaria, mosquito, aquatic, 

larval habitat, iterable, LULC quantities ( e.g., orthogonal functions) whose sampling distribution does depend on the 

https://en.wikipedia.org/wiki/Realization_(probability)
https://en.wikipedia.org/wiki/Scale_invariant
https://en.wikipedia.org/wiki/Standard_deviation
https://en.wikipedia.org/wiki/Anomaly_time_series
https://en.wikipedia.org/wiki/Percentiles
https://en.wikipedia.org/wiki/Pivotal_quantity
https://en.wikipedia.org/wiki/Pivotal_quantity
https://en.wikipedia.org/wiki/Sampling_distribution


International Research Journal of Computer Science and Application                       

Vol. 2, No. 1, March 2018, pp. 1-181                                                                         

  Available Online at http://acascipub.com/Journals.php 
 

 

 

5 

Copyright © acascipub.com, all rights reserved 

parameters in an ordinary krige-based algorithm (e.g., weighted inverse distance matrix) may then reveal eco-

georeferenceable, geolocations of unknown, seasonal, hyperproductive, LULC foci. The goal in aggregating an endemic 

epi-entomological dataset of parameterizable or semi-parameterizable, forecastable, eco-georeferenceable, 

vulnerability, model, signature, frequencies from normalized, geosampled, vector arthropod, grid-stratifiable,  

geoclassifiable, LULC, wavelength regressors is to locate the equation of the straight line (i.e., y=α+βxy=α+βx) [1] 

which may provide an optimal fit for precisely asymptotically determining geolocations of un-geosampled, seasonal, 

eco-georefernceable hyperproductive,eco-endmember foci.  

Normalization of an input sub-meter resolution, experimental eco-georeferenceable, geo-spectrotemporal, 

multinomial, eco-endmember, explanatory LULC  dataset derived from visible and NIR ento-epidemiological,  

empirical, frequency   prognosticators can assure that geosampled, capture point, aquatic, larval habitat, regressable 

features representing   geosampled,  geoclassifiable, signature, wavelength explanators are in the same range of the  

values (i.e. [-1 1]) which may be appropriate whence the vector arthropod, remotely sensed data  is processed in 

minimization algorithms. Gradient Descent (GD) is a first-order iterative optimization algorithm for finding the 

minimum of a function [3]. To find a local minimum of a function employing GD for an, eco-epidemiological, 

oviposition sub-meter resoluton, geo-spectrotemporal, grid-stratifiable, geoclassifiable,  orthogonal, LULC datatset of 

unmixed, signature eco-endmember frequencies, a malariologist, medical entomologist or other experimenter may 

proportionally quantitate the approximate gradient of the geosampled signature regressands for determining the function 

at a  predicted, unknown, eco-georeferenceable, capture point,  seasonal, hyperproductive, aquatic, larval, habitat foci. 

Optimally, given a differentiable scalar field f(x) and x1, a GD will transfer the, eco-epidemiological, LULC, eco-

endmember, signature,  model output toward values of f (e.g., geosampled, aquatic, larval habitat, prolific, frequency, 

count,) by taking steps in the direction of the negative gradient - λ f(x) for optimally deducing non-productive, seasonal, 

eco-georeferenceable, capture point geolocations. Locally, the negated gradient would be the steepest descent direction, 

(i.e., the direction that x1 would need to move in order to decrease f in the model). Conversely moving to a positive 

gradient should reveal geolocations of un-geosampled, seasonal, eco-endmember, hyperproductive, capture point, eco-

georeferenceable foci. The algorithm typically will converge to a local minimum, but it may rarely reach a saddle point, 

or not move at all if x1 lies at a local maximum (e.g., a seasonal, prolific, foci, noisy outlier).  

In mathematics, a saddle point or minimax point is a point on the surface of the graph of a function where the 

slopes (derivatives) of an  eco-georeferenceable, expurgational geoclassifiable, function may be elucidatively 

employable for  defining the surface transitioning to zero which may be employable in an LULC, signature, forecast-

oriented, vulnerability, malaria, mosquito, eco-endmember model  but it may not be a local extremum on both axes. An 

example of a saddle point is when there is a critical point with a relative minimum along one axial direction (between 

peaks) and at a relative maximum along the crossing axis [2]. However, a saddle point in an ento-epidemiological, 

malaria, mosquito, LULC, model for asymptotically, optimally, geo-spectrotemporally targeting eco-georeferenceable, 

seasonal, unknown, hyperproductive, eco-endmember foci need not be in such a form. For example, the function in 

such a predictive risk model may be    based on a known, hyperproductive, signature foci, geosampled, feature attribute 

which may be a saddle point since it would not be a relative maximum, nor relative minimum in the model. Hence the 

geosampled, capture point, model renderings could have a relative maximum or relative minimum in any direction. A 

simple criterion for remotely validating if a given  grid-stratifiable, ento-endmember, geoclassifiable, LULC, capture 

point, sub-meter resolution, oviposition, malaria, mosquito, signature frequency dataset derived from a real-valued, 

aquatic, larval habitat, function F(x,y) derived from an uncoalesced, iterated interpolation,  of a regressable, geosampled 

covariate (e.g., irradiance, of an un-geosampled,  prolific, seasonal foci) for example, is to determine if the saddle point 

is able to be computated by the function's Hessian matrix at that point: if the Hessian is indefinite, then that capture 

point trait  would be a saddle point. 

In mathematics, the Hessian matrix or Hessian is a square matrix of second-order   of a scalar-valued function, 

or scalar field [2]. Specifically, suppose f : ℝn
 → ℝ is a function taken  as input where a vector x ∈ ℝn

 is outputting a 

scalar f(x) ∈ ℝ in an  oviposition,  sub-meter resolution, prognosticative, malaria, mosquito, eco-endmember, geo-

spectrotemporal, signature, frequency, LULC model. If all second partial derivatives of f exist and are continuous over 

the domain of the function, in the  ento--epidemiological, vulnerability model, then the Hessian matrix H of f would be 

a square n×n matrix which may be orthogonally, employable for precisely, aymptotically targeting, eco-

georeferenceable,seasonal, grid-stratifiable, un-geosampled, hypeproductive, aquatic, larval habitats employing 

iteratively, interpolative,(co-kriged), eco-endmember,LULC foci, signature frequencies. 

https://en.wikipedia.org/wiki/Category:First_order_methods
https://en.wikipedia.org/wiki/Iterative_algorithm
https://en.wikipedia.org/wiki/Mathematical_optimization
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Surface_(mathematics)
https://en.wikipedia.org/wiki/Graph_of_a_function
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Orthogonal_function
https://en.wikipedia.org/wiki/Local_extremum
https://en.wikipedia.org/wiki/Minimum
https://en.wikipedia.org/wiki/Maxima_and_minima
https://en.wikipedia.org/wiki/Hessian_matrix
https://en.wikipedia.org/wiki/Positive-definite_matrix#Indefinite
https://en.wikipedia.org/wiki/Square_matrix
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Scalar_field
https://en.wikipedia.org/wiki/Partial_derivative
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In linear algebra, a symmetric n × n real matrix is said to be positive definite if the scalar is positive for every 

non-zero column vector of real numbers [4] (e.g., empirical, geosampled, uncoalesced, seasonal, grid-stratifiable, 

malaria mosquito, aquatic, larval, habitat, geoclassfied, LULC, eco-endmember, capture point frequencies). More 

generally, an n × n Hermitian matrix is said to be positive definite if the scalar is real and positive for all non-zero 

column vectors of complex numbers. If the quadratic term 1/2 Y
T
 H Y is always positive for any nonzero y, then H is 

said to be positive definite [3]. However, a Hessian that is positive definite everywhere may not be required to obtain 

parsimonious quadratic convergence in an epi-entomological, eco-endmember, geoclassifiable, LULC,  wavelength, 

uncoalesced dataset of geosampled, malaria, mosquito, sub-meter resolution, grid-stratifiable, signature, frequency, 

model estimators for optimally, asymptotically, geo-spectrotemporally targeting, eco-georeferenceable,  seasonal, 

hyperproductive, unknown, aquatic, larval habitat, capture point foci. Quadratic convergence means that the square of 

the error at one iteration is proportional to the error at the next iteration [3]. If the quadratic term has positive and 

negative values, then H would be indefinite in any forecast, vulnerability, eco-epidemiological, sub-pixel, 

geoclassifiable, geo-spectrotemporal, LULC model for, targeting, eco-georeferenceable, prolific aquatic, larval habitat, 

foci based on optimally krigeable, signature frequencies. If the quadratic term is zero or positive in the endmember 

frequency model then H would be positive semi-definite. A positive semidefinite matrix is a Hermitian matrix all of 

whose eigenvalues are nonnegative [4].  

Eigenvalues are a special set of scalars associated with a linear system of equations (i.e., a matrix equation) 

that are sometimes also known as characteristic roots, characteristic values proper values, or latent roots [2]. The 

determination of the eigenvalues and eigenvectors of a system is extremely important in physics and engineering, where 

it may be equivalent to matrix diagonalization and arises in such common applications as stability analysis, the physics 

of rotating bodies, and small oscillations of vibrating systems, to name only a few. Each geo-spectrotemporally 

extractable, eco-georeferenceable, aquatic, larval habitat, optimally, remotely, calculable  eigenvalue may be paired 

with a corresponding so-called  frequency,LULC  eigenvector (or, in general, a corresponding right eigenvector and a 

corresponding left eigenvector; there is no analogous distinction between left and right for eigenvalues)[4]. Henceforth 

synthetic, orthogonal, spatial, filter, autocorrelation, eigenvectors may be employable to compute eco-geographically 

varying regression coefficients associated to a prolific, oviposition, geoclassfiable, LULC, signature, capture point, eco-

endmember foci. These coefficients, which may be analogous to weighted regression coefficients, may display 

preferable properties whence optimally, iteratively, quantitatively, interpolating sub-meter resolution, capure point, geo-

classifiable, grid-stratifiable, ento-endmember, LULC, malaria, mosquito, interpolative, signature frequencies for 

asymptotically, geo-spectrotemporally, elucidatively targeting unknown seasonal, hyperproductive, capture point foci. 

Geographically weighted regression (GWR) has been receiving considerable attention in the literature. Maps 

of its coefficients tend to exhibit large degrees of multicollinearity as well as strong positive spatial autocorrelation. 

Meanwhile, spatial filtering furnishes a methodology for the better understanding of multicollinearity and for 

accounting for spatial autocorrelation. Interfacing these two approaches to quantitative, ento-epidemiological, 

empirical, geosampled, , geo-spectrotemporal, malaria, mosquito,eco-endmember, LULC, time series, signature, 

wavelength  datasets may reveal that GWR could be viewed as a special case of spatial filtering that includes interaction 

terms between spatial filtering and  sub-meter resolution, geometrically imaged, capture point, vector arthropod, 

seasonal, geosampled, discontinuous, attribute variables (percentage of intermittent canopy for a post tillering, agro-

village, agro-irrigated, malaria, mosquito, aquatic, larval, habitat, eco-endmember, LULC foci) . This perspective may 

help clarify the degrees-of-freedom issue associated with GWR for optimally, asymptotically, geo-spectrotemporally 

targeting, seasonal, eco-georeferenceable, prolific, un-geosampled, malaria, mosquito, capture point, aquatic, larval 

habitats, while illuminating multicollinearity problems that plague it, which could indicate how to construct a more 

parsimonious solution to the eco-geographically, varying, linear, regression, coefficients problem for these epi-

entomological, signature, wavelength paradigms. Further, forecast, vulnerability signature, capture point, malaria, 

mosquito, geo-spectrotemporal, eco-endmember, frequency models may contribute to the critique of GWR, adding to 

the discussion of multicollinearity complications outlined by Wheeler and Tiefelsdorf (2005) and addressed by Wheeler 

(2007) for optimal decomposition. 

The frequency decomposition of a square matrix A into eigenvalues and eigenvectors is known as eigen-

decomposition, and the fact that this decomposition is always possible as long as the matrix consisting of the 

eigenvectors frequency of  A is square is known as the eigen-decomposition theorem. Eigenvector spatial filtering 

(ESF) is a spatial modeling approach, which has been applied in urban and regional studies, epi-ecological studies, and 
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so on. with non-approximated eigenvector spatial filtering and Monte Carlo simulation experiments which may  be 

suitable for asymptotically quantitating, sub-meter resolution, LULC frequencies of geosampled, malaria, mosquito, 

capture points  for  robustly targeting un-geosampled, seasonal, hyperprouctive, aquatic, larval, habitat foci. The result 

may suggest that the proposed approaches effectively remove positive spatial dependence in the residuals with very 

small approximation errors whence the number of eigenvectors considered is a specific n geosampled, capture point, 

larval habitat, frequency, count value (e.g., 300 or more). Note that these ESF approaches may not deal with negative 

spatial dependence in eco-georeferenceable, oviposition, eco-endmember optimizable LULC signature datasets of 

iteratively interpolative, geoclassifiable, grid-stratifiable, geoclassifiable, unmixed frequencies. The proposed 

approaches are implementable in an R or SAS package.  Let P be a matrix of eigenvectors of a given square matrix A 

and D  be a diagonal matrix with the corresponding eigenvalues on the diagonal in a sub-meter resolution, eco-

endmember, geoclassifiable, LULC, oviposition,  signature, frequency,  forecast, vulnerability model for optimally, 

asymptotically, geo-spectrotemporally, targeting eco-georeferenceable, seasonal, un-geosampled, hyperproductive foci. 

Henceforth, as long as P is a square matrix, A can be written as an eigen-decomposition A=PDP-
1
 whence D is 

a diagonal matrix in the model.  Thus, if a malariologist,medical entomologist or other experimenter lets P be  

a matrix of eigenvectors of a given square matrix A , in an aquatic, larval habitat, eco-endmember, explanatory, 

forecast, vulnerability,oviposition,malaria.mosquito, eco-georeferenceable,  signature, frequency, capture point,  sub-

meter resolution, grid-stratifiable,LULC model and then lets D be a diagonal matrix with the corresponding 

eigenvalues, then  A would be symmetric and the columns of P . In so doing, orthogonal vectors  may asymptotically, 

enable optimal, remote targeting of unknown, seasonal, hyperproductive, eco-endmember, malaria, mosquito, LULC 

foci by employing an orthogonal, iteratable, interpolative, signature as a dependent variable in the model. If P is not 

a square matrix [e.g., the geospace of eigenvectors of  would be one-dimensional (1-D) in the epi-entomological, 

seasonal, prognosticative, signature, risk model] and as such then P cannot have a matrix inverse and A would not have 

an eigen-decomposition. 

However, if P is m x n   (with  m>n), in the geo-spectrotemporal, eco-endmember, oviposition, LULC,  malaria, 

mosquito, signature model then  A may be written employing a singular value decomposition. In so doing, the model, 

frequencies may be able to asymptotically, geo-spectrotemporally, robustly target unknown, eco-georeferenceable, 

seasonal, hyperproductive, aquatic, larval habitat, eco-endmember, LULC foci.  If A is an m x n real matrix with m >n 

in the model output then A may be written employing   a so-called singular value decomposition. Note that there are 

several conflicting notational conventions in use in the literature. Press et al. (1992) defined U to be an m x n   

matrix, D as n x n, and V as n x n. However, the Wolfram Language defines U as an m x n, D as m x n , and V as  n x n. 

In both systems, U and V will have orthogonal columns so that  and  where the two identity 

matrices may have different dimensions, and D has entries only along the diagonal.Singular value decomposition is 

implementable in the Wolfram Language as SingularValue Decomposition[m], which commonly returns a 

list U, D, V , where U and V are matrices and D is a diagonal matrix made up of the singular data ( e.g.,  geosampled, 

malaria, mosquito, aquatic, larval habitat, capture point, geoclassifiable, grid-stratifiable, LULC, signature, frequency 

values of m). In so doing, a complex matrix A  may asymptotically, geo-spectrotemporally, remotely target un-

geosampled, hyperpoductive, seasonal, eco-endmember foci from a sub-meter resolution, empirical optimizable dataset 

of, grid-stratifiable, LULC model, estimators employing the singular value decomposition which  may  parsimoniously  

provide optimal eigen-decomposition of the optimal krigeable, signature frequencies  ewhich may employ the form 

whence U  and  V are unitary matrices, V
H
  is the conjugate transpose of  V, and D  is a diagonal 

matrix whose elements are the singular values of the original matrix.  

Let M be an n × n Hermitian matrix in an eco-endmember, geo-spectrotemporal,  oviposition, malaria, mosquito, 

sub-meter resolution, eco-endmember, geoclassifiable, LULC, interpolative,  signature, frequency, vulnerability, 

aquatic, larval habitat, iterative model for asymptotically geo-spectrotemporally, remotely targeting, seasonal, 

unknown, eco-georeferenceable foci in an interpolation field. The following capture point, eco-endmember, LULC 

properties would then be equivalent to M being positive definite in the paradigm: All its eigenvalues would be positive. 

 Let P
−1

DP be an eigen-decomposition of M where P may be  a unitary complex matrix whose rows comprise 

an orthonormal basis of eigenvectors of M, and D is a real diagonal matrix  in the ento-epidemiological, signature 

model  whose main diagonal may contain the corresponding  orthogonal, grid-stratifiable, wavelength eigenvalues of  a 

known, eco-georeferenceable, geosampled,  hyperproductive, aquatic, larval habitat, capture point, eco-endmember  
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foci. The matrix M may be then regarded as a diagonal matrix D which may be re-expressable in terms of an unknown, 

seasonal, hyperproductive, aquatic, larval habitat, foci, explicator, coordinate dataset  on the basis of P. In particular, 

the one-to-one change of a geosampled, geoclassifiable, LULC, hyperproductive, capture point, eco-endmember, 

wavelength, iteratively interpolative, explanator y = Pz  may  reveal that z*Mz is real and positive for any complex 

vector z if and only if, y*Dy is real and positive for any y; in other words, D would be  positive definite. For a diagonal, 

eigen-decomposable, ento-epidemiological, forecast-oriented, eco-endmember, geoclassifiable, LULC, oviposition, 

sub-meter resolution, grid-stratifiable, geo-spectrotemporal,regression, model matrix to render viable vulnerability, eco-

georeferenceable,signature, frequency forecasts ( e.g., precise geolocations of unknown, hyperproductive, seasonal, 

capture point, aquatic, larval habitats), each element of the main diagonal—that is, every eigenvalue of M must be 

positive. Since the spectral theorem guarantees all eigenvalues of a Hermitian matrix to be real[4], the positivity of an 

uncoalesced, frequency, LULC dataset of eco-endmember, sub-meter resolution, grid-stratifiable, geoclassified, capture 

point, malaria, mosquito, aquatic, larval habitat, signature, wavelength eigenvalues may be validated employing 

Descartes' rule of alternating signs whence the characteristic polynomial of a real, symmetric matrix M is optimally  

employable in the epi-entomological, capture point, eco-epidemiological eigenvector analyses.  Descartes' rule of signs, 

is a technique for determining an upper bound on the number of positive or negative real roots of a polynomial (it is not 

a complete criterion, because it does not provide the exact number of positive or negative roots)[3]. 

   In  linear algebra and functional analysis, a spectral theorem is a result about when an  eco-endmember, geo-

spectrotemporal, signature, wavelength, geoclassifiable,  LULC, operator or matrix can be diagonalized (that is, 

represented as a diagonal matrix in some basis). This may be extremely useful in time series, vulnerability, malaria, 

mosquito, eco-endmember, LULC, signature, frequency, forecast models whence asymptotically,  geo-

spectrotemporally, remotely, targeting, un-geosampled, seasonal, eco-georeferenceable, hyperproductive,  sub-meter 

resolution, grid-stratefiable, aquatic, larval habitat as computations involving a diagonalizable, stratifiable matrix  may 

be reducible to much simpler computations involving the corresponding diagonal matrix ( e.g., a large  diagonalization 

of mapped prolific, capture point, unknown, oviposition, eco-endmember operators on finite-dimensional vector spaces 

modified for dimensional spaces in an African, riceland, agro-village, agro-irrigated environment). In general, the 

spectral theorem can aid in asymptotically identifying a class of linear operators in any multinomial, LULC, geo-

spectrotemporal, eco-epidemiological, sub-meter resolution, vector arthropod, aquatic, larval habitat, vulnerability eco-

endmember, signature, prognosticative analyses which may be  modeled by multiplication operators. In so doing, the 

frequency grid-stratifiable,  eco-georeferenceable, model output may be able to optimally, asymptotically, geo-

spectrotemporally  target seasonal, unknown, hyperproductive, aquatic, larval, habitat, eco-endmember, LULC foci. In 

more abstract language, the spectral theorem is a statement about commutative C*-algebras [2].  

A C*-algebra is a complex algebra A of continuous linear operators on a complex Hilbert space with two 

additional properties:A is a topologically closed set in the norm topology of operators[4]. A is closed under the 

operation of taking adjoints of operators. C*-algebras are now an important tool in the theory of unitary 

representations of locally compact groups, which may be also asymptotically employable in algebraic formulations of 

quantum mechanics, or for optimally geo-spectrotemporally, remotely discriminating hyperproductive, un-geosampled, 

capture point, malaria, mosquito, seasonal, eco-georeferenceable, eco-endmember,sub-meter resolution, LULC foci. A 

C*-algebra, A, may be a Banach algebric term  of a hyperproductive seasonal, un-geosampled, sub-meter resolution,  

frequency, density count, together in an eco-endmember, geoclassifiable, LULC, grid-stratifiable, aquatic, larval 

habitat, risk map * : A → A which may be purposefully  employable for asymptotically, targeting seasonal, eco-

georeferenceable,  unknown, capture point,vector arthropod foci. One writes x* for the image of an element x of A [4].  

 In mathematics, more specifically in functional analysis, a Banach space is a complete normed vector space [3]. 

Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between 

vectors in a capture point, aquatic, larval habitat, malaria, mosquito, epi-entomological, LULC, signature, frequency, 

forecast, vulnerability, geo-spectrotemporal model which would be complete in the sense that a Cauchy sequence of 

vectors always converges to a well defined limit (i.e., eco-georeferenceable, seasonal, aquatic, larval habitat, mean, 

count value) that is within the space ( i.e., time series sample frame). A Cauchy sequence (e.g., a line sequence of 

seasonal, flooded, African, riceland, malaria, mosquito, aquatic, larval habitat, oviposition, agro-irrigated, grid-

stratifiable, LULC, eco-endmember, eco-georeferenceable foci) may be iteratively definable as frequency, explanative, 

density counts and other capture point, remotely sensed, geosampled elements which may  become arbitrarily close to 

each other as the season progresses. The criterion for convergence  in these paradigms may depend only on the terms of 

the sequence itself, as opposed to the definition of convergence, which commonly utilizes the limit value as well as the 

terms for quantiatation of potential, unbiased, frequency, model estimators.  
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More precisely, given any trivial,  frequentistically, quantifiable, Euclidean, LULC, habitat, distance, measurement 

all but a finite number of elements of the calculable, capture point, geoclassifiable, orthogonal, eco-endmember 

sequences would be    tabulated as immature, habitat, distance measurement, signature frequencies  (e.g., distance from 

a hyperproductive, capture point to a agro-village, gridded centroid) in an iteratable, interpolative, epi-entomological, 

eco-georeferenceable  dataset, The utility of Cauchy sequences for determining unknown, seasonal, eco-

georeferenceable, oviposition,  hyperproductive,  aquatic, larval, habitat, eco-endmember, explanative prognosticators 

may lay in the fact that in a complete metric space (one where all such sequences are known to converge to a limit), the 

criterion for convergence ( e.g.,  geosampled, seasonal, maximum, aquatic, larval habitat, wavelength, density counts) 

would  depend only on the terms of the  quantitable signature sequence itself, as opposed to the definition of 

convergence, which could  employ the limit value as well as the model terms for optimal regression. This feature may 

be exploitable employing  unmixing algorithms where  an iterative process may be shown relatively easily to produce a 

Cauchy sequence, consisting of the known, geosampled, aquatic, larval habitat iterates, thus fulfilling a logical 

condition, such as termination at a un-geosampled, potential, geolocation of an eco-georeferenceable, malaria, 

mosquito,hyperproductive, capture point, geoclassifiable, LULC,  eco-endmember foci. 

    Examples of operators to which the spectral theorem applies are self-adjoint operators or more 

generally normalized operators on Hilbert spaces[2].The mathematical concept of a Hilbert space, generalizes the 

notion of  Euclidean space.It extends the methods of vector algebra and calculus from the two-dimensional (2-

D) Euclidean plane and three-dimensional (3-D)space to spaces with any finite number of dimensions(e.g., un-

geosampled, seasonal, geoclassifiable, eco-endmember, hyperproductive, LULC foci) An oviposition, sub-meter 

resolution, malaria, mosquito LULC, signature, specified Hilbert space may hence optimally quantitate an 

abstract vector space possessing the structure of an inner product which may allow length and angle to be remotely 

measurable whence  non-heuristically robustifying, grid-stratifiable, geosampled, aquatic, larval habitat, epi-

entomological, capture point, prognosticative, risk  mapping, impartial explicators of an unknown, seasonal, 

hyperproductive, iteratively interpolatable, eco-endmember foci. In linear algebra, an inner product space is a vector 

space with an additional structure called an inner product [3]. This additional structure may geo-spectrotemporally, non-

frequentistically (i.e., inferencial Bayesianism) associate each pair of geoclassifiable, sub-pixel, LULC grid-stratifiable, 

signature, capture point vectors in geospace with a scalar quantity known as the inner product of the vectors.  

Inner products may allow the rigorous introduction of intuitive, geometrical, LULC notions such as the length of 

an unknown, seasonal, eco-georeferenceable, oviposition, hyperproductive, malaria, mosquito, capture point, eco-

endmember foci based on known, empirical dataset of unmixed, geosampled, aquatic, larval habitat, geo-

spectrotemporal, eco-endmember, signature frequencies. These capture point eco-endmember wavelengths may be 

subsequently employable as a dependent variable in an interpolative, stochastic or deterministic kriged-based algorithm.  

An inner product is a generalization of the dot product [2]. The name "dot product" is derived from the centered 

dot " · " that is often used to designate this operation; the alternative name "scalar product" emphasizes that the result is 

a scalar, rather than a vector, which is the case for the vector product in three-dimensional space.I n mathematics, 

the dot product or scalar product
[
  is an algebraic operation that takes two equal-length sequences of numbers 

(usually coordinate vectors) and returns a single number[4]. Algebraically, the dot product is the sum of the products of 

the corresponding entries of the two sequences of numbers. Geometrically, it is the product of the Euclidean 

magnitudes of the two vectors and the cosine of the angle between them. These definitions are equivalent when 

employing Cartesian coordinates ( e.g., eco-georferenecd, eco-endmember, capture point, seasonal, predicted 

hyperproductive, aquatic, larval, habitat foci). In modern geometry, Euclidean spaces are often defined by using vector 

spaces. In this case, the dot product is used for defining lengths (the length of a vector is the square root of the dot 

product of the vector by itself) and angles (the cosine of the angle of two vectors is the quotient of their dot product by 

the product of their lengths). 

 In  vector space, multiply vectors may be quantizable  together, with the result of this multiplication being 

a scalar.More precisely, for a real vector space in an oviposition,   grid-stratifiable, sub-meter resolution, forecast-

oriented, malaria, mosquito, vulnerability, signature, frequency model for asymptotically optimally, remotely targeting 

eco-georeferenceable, seasonal,  hyperproductive, aquatic, larval habitat, foci  an inner product  may satisfy the 

following four properties. Let , , and  be vectors and  be a scalar, then: 

1. .2. .3. .4.  and equal if and only 

https://en.wikipedia.org/wiki/Complete_metric_space
https://en.wikipedia.org/wiki/Limit_of_a_sequence
https://en.wikipedia.org/wiki/Convergence_(mathematics)
https://en.wikipedia.org/wiki/Iterative_method
https://en.wikipedia.org/wiki/Self-adjoint_operator
https://en.wikipedia.org/wiki/Normal_operator
https://en.wikipedia.org/wiki/Hilbert_space
https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Euclidean_space
https://en.wikipedia.org/wiki/Linear_algebra
https://en.wikipedia.org/wiki/Calculus
https://en.wikipedia.org/wiki/Plane_(geometry)
https://en.wikipedia.org/wiki/Vector_space
https://en.wikipedia.org/wiki/Mathematical_structure
https://en.wikipedia.org/wiki/Inner_product_space
https://en.wikipedia.org/wiki/Linear_algebra
https://en.wikipedia.org/wiki/Vector_space
https://en.wikipedia.org/wiki/Vector_space
https://en.wikipedia.org/wiki/Mathematical_structure
https://en.wikipedia.org/wiki/Scalar_(mathematics)
http://mathworld.wolfram.com/DotProduct.html
https://en.wikipedia.org/wiki/Interpunct
https://en.wikipedia.org/wiki/Interpunct
https://en.wikipedia.org/wiki/Scalar_(mathematics)
https://en.wikipedia.org/wiki/Euclidean_vector
https://en.wikipedia.org/wiki/Vector_product
https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Dot_product#cite_note-1
https://en.wikipedia.org/wiki/Algebraic_operation
https://en.wikipedia.org/wiki/Coordinate_vector
https://en.wikipedia.org/wiki/Product_(mathematics)
https://en.wikipedia.org/wiki/Euclidean_vector#Length
https://en.wikipedia.org/wiki/Euclidean_vector#Length
https://en.wikipedia.org/wiki/Cosine
https://en.wikipedia.org/wiki/Geometry
https://en.wikipedia.org/wiki/Euclidean_space
https://en.wikipedia.org/wiki/Vector_space
https://en.wikipedia.org/wiki/Vector_space
https://en.wikipedia.org/wiki/Square_root
http://mathworld.wolfram.com/VectorSpace.html
http://mathworld.wolfram.com/Vector.html
http://mathworld.wolfram.com/Scalar.html
http://mathworld.wolfram.com/RealVectorSpace.html


International Research Journal of Computer Science and Application                       

Vol. 2, No. 1, March 2018, pp. 1-181                                                                         

  Available Online at http://acascipub.com/Journals.php 
 

 

 

10 

Copyright © acascipub.com, all rights reserved 

if [4].The fourth condition in the list may be the positive-definite condition of the model matrix. Related thereto, 

note that some authors define an inner product to be a function  satisfying only the first three of the above 

conditions with the added (weaker) condition of being (weakly) non-degenerate (i.e., if  for all , then ). 

In such literature, functions satisfying all four such conditions are typically referred to as positive-definite inner 

products (see Ratcliffe 2006), though inner products which fail to be positive-definite are sometimes called indefinite to 

avoid confusion. This difference, though subtle, introduces a number of noteworthy phenomena: For example, inner 

products in forecast, vulnerability, signature, eco-endmember, LULC frequency, sub-meter resolution, grid-stratifiable 

models which fail to be positive-definite may give rise to "norms" which may subsequently yield an imaginary 

magnitude for certain vectors (i.e., spacelike). These vectors may induce "metrics" which fail to be actual metrics in the 

epi-entomological geo-spectrotemporal signature, frequency paradigms.  The Lorentzian inner product is an example of 

an indefinite inner product[4].A vector space together with an inner product on it is called an inner product space. This 

definition also applies to an abstract vector space over any field[2].Examples of inner product spaces include:1. The real 

numbers , where the inner product is given by 2. The Euclidean space , where the inner product is 

given by the  dot product [4]. The vector space of real functions whose domain is 

an closed interval   in a malaria, mosquito eco-endmeber, grid-stratifiable, sub-mter resolution, LULC model may 

be able to optimally asymptotically, geo-spectrotemporally  targeting seasonal, eco-georeferenceable, prolific foci 

which may have an inner product  

When given a complex vector space, the inner product for a sub-meter resolution, grid-stratifiable, eco-

endmember, frequency, signature,  geoclassifiable, LULC,   asymptotical model for discerning, un-geosampled, 

seasonal, hyperproductive, oviposition, malaria, mosquito, capture point,eco-georeferenceable, aquatic, larval habitat  

may be replaced by where  refers to complex conjugation. With this property, the inner product 

(i.e.,a Hermitian inner product and a complex vector space with a Hermitian inner product) may also reveal a Hermitian 

inner product space.Every inner product space is a metric space[2]. The metric in the prognosticative, vector arthropod, 

LULC, eco-endmember,  eco-epidemiological, signature,  frequency model may be given 

by If this process results in a complete metric space, it would be a Hilbert space in the model. 

Since every inner product naturally induces a norm of the form whereby it follows that every inner product 

space[4], this model location may be  a normed space. Inner products which fail to be positive-definite yield "metrics" - 

and hence, "norms" - which are actually due to failing their respective positivity conditions. For example, -

dimensional Lorentzian Space (i.e., the inner product space consisting of  with the Lorentzian inner product) comes 

equipped with a metric tensor of the form and a squared norm of the 

form . As such,  inner product may then provide the means of optimally 

defining orthogonality between eco-georeferenceable, geosampled, capture point, vector habitats (zero inner product) in 

a malaria, mosquito, forecast, vulnerability, grid-stratifiable, geoclassefiable, LULC, signature, frequency model. 

 

An inner product naturally induces an associated norm; thus, an inner product space may also be a normed 

vector space in a frequency-oriented, prognosticative, vulnerability, sub-meter resolution, grid-stratifiable, signature, 

malaria, mosquito, frequency, LULC model. Henceforth eco-georeferenceable, hyperproductive, seasonal, capture 

point, aquatic, larval habitat, eco-endmember, geoclassfiable, LULC foci from an iteratively interpolatable, empirical 

dataset of pameterizable and or semi-paramterizable, unbiased estimators may asymptotically, optimally, geo-

spectrotemporally,  remotely, target un-geosampled, prolific,  habitat geolocations.  In mathematics, a normed vector 

space is a vector space over the real or complex numbers, on which a norm is definable[2]. A norm in an uncoalesced 

frequency, capture point eco-endmember dataset of vector arthropod, grid-stratifiable, wavelength, vulnerability, 

LULC, signature, model estimators may be based on the formalization and the generalization to real vector spaces 

which may be based on intuitive, Euclidean, habitat, distance measurements. Hence, let V be a normed vector space in 

an eco-epidemiological, aquatic, larval habitat geo-spectrotemporal, forecast, vulnerability, signature, frequency, 

geoclassifiable, sub-meter resolution, LULC model for asymptotically optimally targeting unknown, seasonal, capture 

point, malaria, mosquito, eco-endmember foci. Then ||v − w|| ≥ | ||v|| − ||w|| | , ∀ v, w ∈ V. Henceforth, by letting v, w ∈ 
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V in the vector arthropod prognosticative model, a malariologist or medical entomologist may show that ||v − w|| ≥ ||v|| 

− ||w|| and ||v − w|| ≥ ||w|| − ||v|| (1.1) in the model renderings which may reveal un-geosampled, seasonal, 

hyperproductive, aquatic, larval habitat, eco-endmember, geoclassifiable, LULC, foci. The proofs of these two 

inequalities may be similar, so an experimenter may only need to prove the first perpective. Using the condition in 

equation.1.1, ||v|| = ||(v − w) + w|| ≤ ||v − w|| + ||w|| may also optimally asymptotically reveal, unknown prolific, 

seasonal, foci, capture point explanators.  

A malariologist or medical entomologist may consider a bounded interval [a, b] ⊂ R, and let C[a, b] denote the set 

of continuous functions f : [a, b] → C, i.e., C[a, b] := {f : [a, b] → C |} where f is continuous, in a grid-stratifiable, sub-

meter resolution, eco-endmember, signature, frequency, prognosticative,  LULC, model  estimator, empirical, geo-

spectrotemporal, geosampled, oviposition dataset. C[a, b] may be the optimal natural operations of addition and scalar 

multiplication that may aid then in asymptotically,optimally identifying un-geosampled, seasonal, eco-

georeferenceable, hyperproductive,capture point, aquatic, larval habitat,  iteratable, interpolative, eco-endmember foci. 

Each function f ∈ C[a, b] may be  bounded and may assume a maximum value; hence, let ||f||∞ := max x∈[a,b] |f(x)| 

(1.2). Subsequently, a malariologist or medical entomologist may verify that || · ||∞ is a viable model realization which 

could then define a norm on C[a, b], (i.e., that it satisfies the requirements in 1.1). In so doing, ||f||∞ ≥ 0 for all f ∈ C[a, 

b] may reveal aniteratively interpolative dataset of signature, geoclassified, grid-stratified,  orthogonal, LULC, spectro-

temporal, eco-endmember frequencies of an unknown, prolific foci. In such circumstances the function f = 0 would 

belong to C[a, b] which may satisfy that ||f||∞ = 0 in the model renderings. On the other hand, if ||f||∞ = 0 for some 

geoclassifiable, eco-endmember, iteratively, interpolative, grid-stratifiable, LULC, capture point, aquatic, larval, habitat 

function f ∈ C[a, b], then the definition of ||·||∞ may reveal that f(x) = 0 for all x ∈ [a, b], (i.e., f = 0) which would also 

verify.1.1. Once this property is clearly satisfied in the signature, frequency, vulnerability, malaria, mosquito, eco-

endmember, prognosticative model, an experimenter may determine f,g ∈ C[a, b]. Then, for each x ∈ [a, b], |f(x) + 

g(x)|≤|f(x)| + |g(x)| ≤ ||f||∞ + ||g||∞; because this would hold for all x ∈ [a, b] in the derivative,LULC, model, wavelength 

dataset.  Hence it follows that ||f + g||∞ = max x∈[a,b] |f(x) + g(x)| ≤ ||f||∞ + ||g||∞ may optimally asymptotically, geo-

spectrotemporally, target, seasonal, eco-georeferenceable, un-geosampled, hyperproductive, capture point, aquatic, 

larval habitat, eco-endmember,LULC foci. This may be verifiable by determining if ||·||∞ defines a norm on C[a, b] ( 

i..e, supremums-norm). 

Let K be a T2-topological space and let F be the space of all bounded complex-valued continuous functions 

definable on K  in an eco-endmember, sub-meter resolution, malaria, mosquito, signature, frequency, grid-stratifiable, 

geoclassifiable, LULC, prognosticative, capture point model. A topological space fulfilling the -axiom may 

determine if two capture points have disjoint  neighborhoods. In the terminology of Alexandroff and Hopf (1972), a -

space is called a Hausdorff space. In topology and related branches of mathematics, a Hausdorff space, separated 

space or T2 space is a topological space in which distinct points have disjoint neighbourhoods[2]. Of the 

many separation axioms that can be imposed on a topological space, the "Hausdorff condition" (T2) is the most 

frequently used and discussed. It implies the uniqueness of limits of sequences, nets, and filters.A -space is 

sometimes said to "have Hausdorff topology" or "be Hausdorff."[4] An Etale space provides an example of a space that 

is not . Regardless, the supremum norm is the norm definable on F by Hence, Fwould be a 

commutative Banach algebraic variable with identity in a sub-mter resolution, grid-startfiaible, geo-spectrotemproal, 

forecast, vulnerability, signature frequency model for optimally asymptotically targeting  un-geosampled, eco-

georeferenceable, hyperproductive, aquatic, larval habitat, capture point foci.  

A Banach algebra is an algebra  B over a field  F endowed with a norm  such that B  is a Banach space under 

the norm  where  F is frequently taken to be the complex numbers (i.e., operational, empirical, sub-

meter resolution, eco-endmember, grid-stratifiable, LULC, signature, capture point, uncoalesced, interpolative  

frequencies)  in order to ensure that the operator spectrum fully characterizes an operator[ i.e., the spectral theorems for 

normal or compact normal operators do not, in general, hold in the operator spectrum over real numbers for iteratively 

discerning, eco-georeferenceable, un-geosampled, malaria, mosquito aquatic, larval habitat, eco-endmember, 

geoclassfieid, LULC, hyperproductive foci.  If B is commutative and has a unit, then  is invertible if  for 

all , where  is the Gelfand transform in the model formulation process. 
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The Gelfand transform  is defined as follows. If  is linear and multiplicative in the sense 

 and where B is a commutative Banach algebra, then 

[4]. The Gelfand transform would be automatically bounded in any signature, sub-meter resolution, grid-

stratfiable, malaria, mosquito, capture point, prognosticative, vulnerability, eco-endmember, LULC, frequency model. 

For example, if  with the usual norm, then B would be Banach algebra under convolution and the Gelfand 

transform would be the Fourier transform. In fact, R may be replaced by any locally compact Abelian group, and then  
B in the malaria mosquito model where h may have a signature iteratively interpolative LULC unit if and only if the 

group is discrete. 

An Abelian group is a group for which the elements commute (i.e.,  for all elements  and ) [2]. 

Abelian groups therefore correspond to groups with symmetric multiplication tables. All cyclic groups are Abelian, but 

an Abelian group is not necessarily cyclic [4]. All subgroups of an Abelian group are normal[2]. In an Abelian group, 

each element is in a conjugacy class by itself, and the character table involves powers of a single element known as 

a group generator.In the Wolfram Language, the function AbelianGroup[ n1, n2, ... ] represents the direct product of 

the cyclic groups of degrees , , ....No general formula is known for giving the number of non-isomorphic finite 

groups of a given group order for an oviposition, grid-stratifiable, malaria, mosquito, signature, frequency,  sub-meter 

resolution, eco-georeferenceable, forecast-oriented, eco-endmember, geoclassifiable, LULC, geo-spectrotemporal 

model in the literature.Regardless, the number of non-isomorphic, Abelian, finite groups  of any given group 

order  in these models may be  given by writing  as where the  are distinct prime factors. In so doing, 

then whence  may be  the partition function, in the model which is implementable in the Wolfram 

Language as FiniteAbelianGroupCount[n]. The values of  for , 2, ... are 1, 1, 1, 2, 1, 1, 1, 3, 2, ... 

(OEIS A000688). 

The smallest orders for which  , 2, 3, ... nonisomorphic Abelian groups exist are 1, 4, 8, 36, 16, 72, 32, 

900, 216, 144, 64, 1800, 0, 288, 128, ... (OEIS A046056), where 0 denotes an impossible number (i.e., not a product of 

partition numbers) of non-isomorphic Abelian, groups. The "missing" values are 13, 17, 19, 23, 26, 29, 31, 34, 37, 38, 

39, 41, 43, 46,.. (OEIS A046064). The incrementally largest numbers of Abelian groups as a function of order are 1, 2, 

3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, ... (OEIS A046054), which occur for orders 1, 4, 8, 16, 32, 64, 128, 256, 512, 

1024, 2048, 4096, 8192, ... (OEIS A046055).The Kronecker decomposition theorem states that every finite Abelian 

group can be written as a group direct product of cyclic groups of prime power group order[see 4]. If the group order of 

a finite group is a prime ,in a sub-meter resolution, grid-stratifiable, malaria, mosquito, eco-epidemiological, 

predictive, risk model for asymptotically, geo-spectrotemporally, optimally, targeting seasonal, eco-georeferenceable, 

hyperproductive, aquatic, larval, habitat foci then there exists a single Abelian group of order  (denoted ) and no 

non-Abelian groups. If the group order is a prime squared  ( ), then there are two Abelian groups 

denotable  and . If the group order is a prime cubed , then there are three Abelian groups 

(denoted , , and ), and five groups total. If the order is a product of two primes  and , 

then there exists exactly one Abelian group of group order  (denoted )[4]..Another interesting result is that 

if  denotes the number of nonisomorphic Abelian groups of group order  in a sub-meter resolution, malaria, 

mosquito, geo-spectrotemporal LULC model then where  is the Riemann zeta 

function. 

The Riemann zeta function is an extremely important special function of mathematics and physics that arises 

in definite integration and is intimately related with very deep results surrounding the prime number theorem. The 

prime number theorem gives an asymptotic form for the prime counting function , which counts the number 

of primes less than some integer . Legendre (1808) suggested that for 
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large , with  (where  is sometimes called Legendre's constant), a formula which is 

correct in the leading term only, may be  (Nagell 1951, p. 54; Wagon 

1991, Havil 2003,). Legendre's constant is the number 1.08366 in Legendre's guess at the prime number 

theorem with . Legendre first published a guess the form in 

This Essai sur la Théorie des Nombres (Edwards 2001, p. 3; Havil 2003, p. 177), but in the third edition 

(renamed Théorie des nombres), modified it to the form above (Derbyshire 2004, pp. 55 and 369).This expression is 

correct to leading term only, since it is actually true that this limit approaches 1 (Rosser and Schoenfeld 1962, 

Panaitopol 1999)., Gauss proposed that .Gauss later refined his estimate 

to where is the logarithmic integral. Gauss did not publish this result, which he first 

mentioned in an 1849 letter to Encke. It was subsequently posthumously published in 1863 (Gauss 1863; Havil 2003, 

pp. 174-176).Note that  has the asymptotic series about  of . 

While many of the properties of this function have been investigated, there remain important fundamental 

conjectures (most notably the Riemann hypothesis) that remain unproved to this day. The Riemann zeta 

function  may be  definable over the complex plane for one complex discontinuous, eco-endmember, geosampled, 

malaria, mosquito, oviposition, capture point, covariate  which may be conventionally denoted  (instead of the usual ) 

in deference to the notation used by Riemann in his 1859 paper that founded the study of this function (Riemann 1859). 

The function is implementable in the Wolfram Languageas Zeta[s] 

The numbers of Abelian groups of orders  are given by 1, 2, 3, 5, 6, 7, 8, 11, 13, 14, 15, 17, 18, 19, 20, 25, 

... (OEIS A063966) for , 2, .... Srinivasan (1973) has also shown 

that where the interpolative, vulnerability  equations 

(OEIS A021002, A084892, and A084893) and  is again the Riemann 

zeta function. Note that Richert (1952) incorrectly gave . The sums  can also be written in the explicit 

forms , and  in a sub-mter resolution, grid-stratifiable, eco-

endmember, geo-spectrotemporal, prognosticative, geoclassfiiable, LULC, signature, frequency model for optimally 

asymptotically, geo-spectrotemporally, remotely targeting, eco-georeferenceable, hyerproductive, aquatic, larval 

habitat, seasonal, foci.  

The Fourier transform is a generalization of the complex Fourier series in the limit as . Replace the 

discrete  with the continuous  while letting  . Then change the sum to an integral, and the equations 

become  and Here,  

which may be the forward ( ) Fourier transform in a grid-stratifiable, sub-meter resolution, capture point, eco-

endmember, LULC prognosictative, frequency-oriented,  vulnerability model for asymptotically geo-spectrotemporally 

identifying, eco-georeferenceable, seasonal, un-geosampled, hyperproductive, malaria, mosquito foci, 
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and [ i.e., the inverse ( ) Fourier transform}. The notation  is 

introduced in Trott (2004), and  and  are sometimes also used to denote the Fourier transform and inverse 

Fourier transform, respectively (Krantz 1999). 

Note that some authors (especially physicists) prefer to write the transform in terms of angular 

frequency  instead of the oscillation frequency . However, this would destroy the symmetry, in an eco-

endmember, grid-stratifiable, sub-meter resolution, eco-georeferenceable, geo-spectrotemporal, LULC model especially 

whenceoptimally asymptotically targeting un-geosampled, hyperproductive, aquatic, larval habitat, eco-endmember 

foci, resulting in the transform pair  where 

To restore the symmetry of the transforms, the 

convention where  may be 

remotely usable for asymptotically, identifying geolocations of un-geosampled, aquatic, larval habitat, capture points. 

In general, the Fourier transform pair may be definable in a sub-meter resolution, malaria, mosquito model by 

employing two arbitrary constants  and  as and 

.The Fourier transform   of afunction    may be robustly implementable in 

the Wolfram Language as FourierTransform[f, x, k], where different choices of  and  can be used by passing the 

optional  FourierParameters-> a, b  option. By default, the Wolfram Language takes FourierParameters as . 

Unfortunately, a number of other conventions are in widespread use. For example,  is used in modern 

physics,  is used in pure mathematics and systems engineering,  is used in probability theory for the 

computation of the characteristic function,  is used in classical physics, and  is used in signal 

processing. In Bracewell (1999,), it was always assumed that  and  unless otherwise stated. This choice 

may result in greatly simplified,  eco-endmember, capture point, malaria, mosquito, aquatic, larval habitat,  signature, 

frequency, geoclassifiable, LULC, orthogonal transforms quantitated on common functions such as 1, , 

etc. 

Since any  eco-endmember, LULC, explanatory, frequency function can be split up 

into even and odd portions  and , a  Fourier 

transform for a sub-meter resolution, grid-stratifiable, geoclassfiiable, orthogonal, malaria, mosquito, oviposition, epi-

entomological, signature model for asymptotically forecasting geolocations of unknown, seasonal, aquatic, larval 

habitat, hyperproductive, eco-georeferenceable, foci may be expressable in terms of the Fourier cosine 

transform and Fourier sine transform as A 

function  has a forward and inverse Fourier transform such 

that provided that\1.  exists. There are a 

finite number of discontinuities [4]. The function has bounded variation.A sufficient weaker condition is fulfillment of 

the Lipschitz condition (Ramirez 1985). The smoother a function (i.e., the larger the number of continuous derivatives), 

the more compact its Fourier transform [2]. 
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The Fourier transform is linear, since if  and  have Fourier transforms  and , 

then  Therefore, 

 The Fourier transform may  also be  symmetric  in 

an eco-endmember,  sub-meter resolution, malaria, mosquito, capture point, vulnerability, signature, frequency model 

for aymptotically , geospectrotemporally, remotely identifying eco-georeferenceable, seasonal, hyperproductive, eco-

endmember, grid-stratifiable, LULC foci. since  implies .Let  denote 

the convolution in a sub-meter resolution, grid-startfiable, eco-endmember, LULC model for targeting un-geosampled, 

seasonal, prolific foci. In so doing,  the transforms of convolutions of functions may  have particularly quantizable, non-

heuristically optimizable, ento-endmember transforms,[ e.g.,  

, , , The first of these may be  

asymptotically derived in the vector arthropod, signature,frequency,LULC model  as follows: 

where .There is also a somewhat 

surprising and extremely important relationship between the autocorrelation and the Fourier transform known as 

the Wiener-Khinchin theorem[4].  

Recall the definition of the autocorrelation function   of a 

function , Also recall that the Fourier transform of  may be  defined 

by giving a complex 

conjugate of Plugging  and  into the autocorrelation function of a sub-meter 

resolution, eco-endmember, geoclassifiable, LULC,  geo-spectrotemporal, malaria, mosquito, prognosticative signature, 

frequency  model therefore may render 

.Henceforth  

the autocorrelation  may be simply given by the Fourier transform of the absolute square of whence asymptotically 

geo-spectrotemporally, remotely identifying, un-geosampled, malaria, mosquito, aquatic, larval habitat, eco-

endmember, eco-georeferenceable,  hyperproductive foci. The Wiener-Khinchin theorem is a special case of the cross-

correlation theorem with  [4]. 

Let , and  denote the complex conjugate of , then the Fourier transform of the absolute 

square of  may be  given by  in an empirically regressed, oviposition, 

uncoalesced, signature  dataset of  eco-endmember, frequency-oriented, malaria, mosquito, prognosticative, 

vulnerability model unbiased estimators for aymptotically identifying unknown, seasonal, eco-georeferenceable, 

capture point, prolific foci. The Fourier transform of a derivative  of a function  is commonly related to the 

transform of the function  itself[4]. A malariologist, medical entomologist or other experimenter  may 

consider  for  optimal remote quantitation of an empirical geo-spectrotemporal, 

geosampled, eco-georeferenced, geoclassfiable, LULC, oviposition dataset of capture point, iteratable, interpolative, 

capture point, signature frequencies.Using integration by 
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parts with , and t could occur in the residual 

dataset. In so doing, then The first term in the 

malaria, LULC, forecast model would consist of a function times . But if the function is bounded so 

that (as any geophysically, interpolative ,significant, LULC signal must be); then the capture point, eco-

endmember,capture point,  signature term would vanish, 

leaving This process may be iterated for 

the th derivative to yield  whence asymptotically targeting seasonal, 

hyperproductive, aquatic, larval habitat, eco-georefernceable, eco- endmember foci. 

The important modulation theorem of Fourier transforms allows  to be robustly 

geo-spectrotemporally expressed in terms of  as follows, 

Since the derivative of the 

Fourier transform is given by [4] it follows that in a sub-

meter resolution, eco-endmember, geoclassifiable, LULC  geo-spectrotemporal, forecast, vulnerabilitym signature, 

frequency model[i.e.,  ] may aymptotically,optimize. targeting seasonal,  grid-

stratifiable, eco-georeferenceable foci. Iterating the LULC signal further may  render the 

general formula The variance of a Fourier transform may be  

then which may be  true when in the malaria model output.If  has the Fourier 

transform , then the Fourier transform in the signature, frequency, LULC, vector, arthropod model 

may have the shift 

property  so then   

 will be the Fourier transform If  has a Fourier 

transform , then the Fourier transform obeys a similarity theorem 

so  has the Fourier 

transform The "equivalent width" of a Fourier transform in the  epi-entomological, 

prognosticative, geoclassifiable, grid-stratfiable, sub-meter resolution, signature, LULC model for optimally, 

asymptotically, geo-spectrotemporally,  targeting, un-geosampled, eco-georeferenceable, aquatic, larval habitat, 

seasonal foci then would be by deducing whether whence the remotely quantiated 

"autocorrelation width" is whence  denotes the cross-

correlation of  and  and  is the complex conjugate in the frequency model. Any operation on  which leaves its 
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eco-endmember signature, frequencies   unchanged leaves  unchanged, 

since [4] Table 1 summarizes some common Fourier transform pairs which may 

be optimally usable for robustly quantiating a a sinc function in the time domain in an eco-empirical, geosampled, geo-

spectrotemporal, forecast, vulnerability, geoclassifiable, LULC signature, frequency model for asymptotically, 

optimally, geo-spectrotemporally targeting eco-georeferenceable, unknown, aquatic, larval habitat, prolific, capture 

point, eco-endmember foci. 

Table 1:  Fourier Transforms for a malaria mosquito, signature, endmember model 

function 
  

Fourier transform--1  1 
 

Fourier transform--cosine  

 

 

Fourier transform--delta function 

 

 

Fourier transform--exponential function  

 

 

Fourier transform--Gaussian  

 

 

Fourier transform--Heaviside step function 

 

 

Fourier transform--inverse function  

 

 

Fourier transform--Lorentzian function  

 

 

Fourier transform--ramp function 

 

 

In2-D, , the Fourier transforbecomes whence 

[4]. Similarly, the -dimensional Fourier transform can be defined 

for ,  by or . A periodic, continuous, malaria, 

mosquito, capture point, eco-endmember,LULC  continuous signal may be a 

spectrum where 

 and  are spatial frequencies in x and y directions, respectively, and  is the 2D spectrum of  

.Conversely a periodic, discrete, habitat  continuous, signal, may be delineated robustly remotely as 

and 
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where x and y are the spatial intervals between 

consecutive ,immature, habitat, signal samples in the x and y directions, respectively,whence 

  and  are sampling rates in the two directions, and they are also the periods of the 

spectrum .A periodic, continuous signal, discrete, aperiodic, , sub-meter resolution, grid-stratefiable, 

geoclassified, LULC, aquatic,larval habitat, captire point spectrum for optimally, asymptotically, remotely targeting 

unknown, seasonal, prolific foci may be quantitaed using 

. 

A complete space with an inner product is called a Hilbert space. An (incomplete) space with an inner product is 

called a pre-Hilbert space, since its completion with respect to the norm induced by the inner product is a Hilbert 

space[2]. Inner product spaces over the field of complex numbers are sometimes referred to as unitary spaces. Hilbert 

space is a vector space H with an inner product  such that the norm defined by turns H into 

a complete metric space[2]. If the metric defined by the norm is not complete, then  is instead known as an inner 

product space.Examples of finite-dimensional Hilbert spaces include1. The real  numbers  with  the vector dot 

product of  and .2. The complex numbers  with  the vector dot product of  and the complex 

conjugate of .An example of an infinite-dimensional Hilbert space is , the set of all functions  such that 

the integral of  over the whole real line is finite[4]. In this case, the inner product is  

In mathematics, orthogonality is the generalization of the notion of perpendicularity  to the linear 

algebra of bilinear forms [3]. Two elements u and v of a vector space with bilinear form B are orthogonal when B (u, v) 

= 0[4]. When the bilinear form corresponds to a pseudo-Euclidean space in an eco-endmember, frequency-oriented,  

sub-meter resolution, malaria, mosquito, prognosticative, geo-spectrotemporal, vulnerability, LULC model there may 

be non-perpendicular vectors that are hyperbolic-orthogonal.Regressively quantitating orthogonal, geoclassifiable, grid-

stratified, LULC capture point, eco-endmember, attribute features may enable precise targeting of unknown, seasonal, 

hyperproductve, malaria, mosquito, aquatic, larval habitat, eco-georeferenceable, foci.  

 In plane geometry, two lines are hyperbolic orthogonal when they are reflections of each other over the asymptote 

of a given hyperbola [2]. In the case of function spaces, families of orthogonal functions are used to form a basis.Hence, 

two particular hyperbolas may be employable in the plane:(A) xy = 1 with y = 0 as a asymptote in an eco-

georeferenceable, geo-spectrotemporal, vector arthropod, forecast, vulnerability, malaria, mosquito, geometrical, grid-

stratifiable, LULC, eco-endmember,signature, aquatic, larval habitat, capture point model which may be   reflected in 

the x-axis and within a line y = mx which may subsequently become y = −mx. In this case the lines would be hyperbolic 

orthogonal if their slopes are additive inverses (B) x
2
 − y

2
 = 1 where y = x are asymptote. For lines y = mx  in an ento-

ecoepidemiological, geo-spectrotemporal, malaria, mosquito, eco-endmember, LULC, signature, frequency model 

estimation where −1 < m < 1, t x = 1/m, may be then  y = 1, for example.Hence an unknown seasonal, eco-

georefereneable, seasonal, hyperproductive, capture point (1/m , 1) on the regression line may be  optimally reflected 

across y = x to (1, 1/m).Further,  the reflected line of the prolific, malaria, aquatic, larval habitat, capture point, 

quantitable explanative, slope 1/m and the slopes of hyperbolic orthogonal lines could be  reciprocals of each other.The 

relation of hyperbolic orthogonality in the prognosticative, vulnerability model may asymptotically, geo-

spectrotemporally target seasonal, hypeproductive, unknown, eco-georeferenceable,  malaria, mosquito, aquatic,  larval, 

habitat,capture point foci by employing geoclassifiable, signature, LULC,  eco-endmember  classes of parallel lines in 

the plane, where any particular line may represent the known capture point. Thus, for a given hyperbola and 

asymptote A in an oviposition, sub-meter resolution, geosampled, geo-spectrotemporal, malaria, mosquito, LULC 

model for optimally targeting unknown, hyperproductive seasonal, aquatic, larval habitat foci, a pair of lines (a,b) may 

be hyperbolic orthogonal if there is a pair (c,d) such that  c is the reflection property of the radius being orthogonal to 
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d across A. As such, the tangent at the curve in the eco-endmember, LULC, signature, frequency, geoclassifiable, 

hyperproductive, capture point, seasonal foci may be extended from an endemic, eco-georeferenceable, grid-stratifiable 

geolocation to the hyperbola by the hyperbolic orthogonal concept. In doing so, the inner product of the model may 

identify seasonal, unknown, prolific, aquatic, larval habitat, capture points. 

Inner product spaces may generalize Euclidean spaces in which the inner product is the dot product, (also known 

as the scalar product) to vector spaces of any calculable, seasonal, hyperproductive, eco-georeferenceable, sub-meter 

resolution,malaria, mosquito, geosampled, aquatic, larval habitat,  remotely sensed, grid-stratifiable, LULC   eco-

endmember, wavelength dimension. In mathematics, the dot product or scalar product is an algebraic operation that 

takes two equal-length sequences of numbers (usually coordinate vectors) and returns a single number [3]. In Euclidean 

geometry, the dot product of the Cartesian coordinates of two vectors is widely used and often called inner product (or 

rarely projection product)[4]. Hence, an ento-epidemiological, geoclassfiable, forecast, vulnerability LULC, 

signature,eco-endmember, signature, frequency,   geo-spectrotemporal model may  optimally asymptotically target 

unknown. seasonal, eco-georeferenceable,  hyperproductive, malaria, mosquito, grid-stratifiable,capture point, 

geosampled,  attribute features by employing  a functional analysis. 

Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector 

spaces endowed with some kind of limit-related, structure (e.g. inner product, norm, topology, etc.). The linear 

functions may be optimally asymptotically definable for remotely, geo-spectrotemporally targeting, unknown, malaria, 

mosquito, hyperproductive, aquatic, larval habitat, ento-ecoepidemiological, geoclassified, LULC capture points in a 

suitable sense. The historical roots of functional analysis lie in the study of spaces of functions and the formulation of 

properties of transformations of functions such as the Fourier transform as transformations 

defining continuous, unitary etc. operators between function spaces[4]. The Fourier transform of a function of time 

itself is a complex-valued function of frequency, whose absolute value represents the amount of that frequency present 

in the original function, and whose complex argument is the phase offset of the basic sinusoid in that frequency[2]. A 

functional, frequency, eco-endmember, geo-spectrotemporal, invasive, LULC, signature, frequency analyses would be 

particularly useful for the study of differential and integral equations which may be employable for precisely, 

parsimoniously,   asymptotically, targeting seasonal, eco-georeferenceable, sub-meter resolution, un-geosampled, 

hyperproductive, malaria,  mosquito, aquatic, larval habitats. 

An inner product may induce an associated norm, in an oviposition, prognosticative, eco-endmember, malaria, 

mosquito, LULC, signature, risk  model for  optimally asymptotically targeting unknown, hyperproductive, eco-

georefernceable, seasonal, capture point, aquatic, larval habitats. In such circumstances an inner product space may be 

also a normed vector space in the signature paradigm. A complete space with an inner product is called a Hilbert 

space[4]. An (incomplete) space with an inner product is called a pre-Hilbert space, since its completion with respect to 

the norm induced by the inner product is a Hilbert space [2]. Since  Hilbert spaces in an ento-epidemiological, 

geoclassifiable, geo-spectrotemporal, oviposition, endemic, LULC, malaria, mosquito, forecast, vulnerability, eco-

endmember, signature frequency model would be  complete there would be enough limits in the space to allow the 

techniques of calculus to be employable for optimally forecasting eco-georeferenceable, geolocations of unknown, 

seasonal, hyperproductive, aquatic, larval, habitat foci. 

Calculus of variations is a type of mathematics involving maxima and minima,that science has used to produce 

significant theories. It is a field of mathematical analysis that employs variations, which are small changes 

in functions and functionals, to find maxima and minima of functionals, which may be represented as signature capture 

point, aquatic, larval habitat, forecast vulnerability mappings from a set of functions derived  from an  empirical  

optimizable, frequency  dataset of geosampled, discrete, finite,  integer values eco-cartographically,  delineating eco-

georeferenceable, hyperproductive, malaria mosquito, density, seasonal, LULC, frequency, count values). Functionals 

are often expressed as definite integrals involving functions and their derivatives [2]. Functions that maximize or 

minimize functionals in an oviposition, capture point, ento-epidemiological, geoclassifiable, time series, malaria, 

mosquito, forecast, vulnerability, LULC model for asymptotically targeting seasonal, hyperproductive, eco-

georeferenceable, unknown, eco-endmember foci may be found using the Euler–Lagrange equation of the calculus of 

variations. 

  In the calculus of variations, the Euler–Lagrange equation, Euler's equation, or Lagrange's equation  is a second-

order, partial, differential equation whose solutions are the functions for which a given functional is stationary[3]. 

Because a differentiable functional is stationary at its local maxima and minima, the Euler–Lagrange equation may be  

useful for solving optimization problems in which, given some functional, a malariaologist, medical entomologist or 
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other experimenter seeks the function for minimizing or maximizing a geosampled, vector arthropod, geo-

spectrotemporal, forecast, vulnerability, grid-stratifiable, frequency model for asymptotically geo-spectrotemporally 

targeting, unknown, hyperproductive, seasonal, eco-georeferenceable,  capture point, ento-endmember,aquatic, larval, 

habitat foci from an iteratively interpolative sub-meter resolution, geoclassifiable, robustly krigable, LULC signature. 

This may be analogous to Fermat's theorem in calculus, stating that at any point (e.g., seasonal hyperproductive, un-

geosampled foci) where a differentiable function attains a local extremum its derivative is zero [see 4]. In 

mathematics, Fermat's theorem (also known as interior extremum theorem) is a method to find 

local maxima and minima of differentiable functions on open sets by showing that every local extremum of the function 

is a stationary point (e.g., the function derivative is zero at a unknown, hyperproductive, seasonal, aquatic, larval 

habitat, malaria, mosquito, geoclassifiable, LULC, sub-meter resolution, capture point,eco-endmember, foci). A 

gradient technique may be developed for computing a class of non-isolated, signature, frequency   seasonal, 

hyperproductive, eco-endmember, capture point (i.e.,  C-stationary points), for a real functional F defined on a Hilbert 

space in a forecast, vulnerability, ento-epidemiological, geoclassifiable, LULC, oviposition model.It may be shown that 

the least-squares solutions of the operator equation Ax=b are C-stationary, seasonal, prolific, malaria, mosquito, 

aquatic, larval habitat, capture  points for the functional (1/2)‖Ax−b‖
2
 whence R(A) is closed and that certain orthogonal 

eigenvectors of the general eigen-problem Ax=λBx are C-stationary points for the functional 1/2‖Ax−(<Ax, Bx>/<Bx, 

Bx>) Bx‖
2
. 

Hilbert spaces arise naturally and frequently in mathematics and physics, typically as infinite-dimensional  

function spaces. They are indispensable tools in the theories of partial differential equations, quantum 

mechanics, Fourier analysis (which includes applications to signal processing and heat transfer)—and ergodic theory, 

which forms the mathematical underpinning of thermodynamics.  Hilbert space methods for functional analysis may be 

applicable for ento-epidemiological, malaria, mosquito, oviposition, sub-mter resolution, grid-stratifiable, LULC 

research. Apart from the classical Euclidean spaces, examples of Hilbert spaces include spaces of square-integrable 

functions, spaces of sequences,  consisting of generalized functions, and Hardy spaces of holomorphic functions.  

In complex analysis, the Hardy spaces (or Hardy classes) H
p
 are certain spaces of holomorphic functions on 

the unit disk or upper half plane. In  mathematics, a holomorphic function is a complex-valued function of one or 

more complex variables that is complex differentiable in a neighborhood of every point in its domain[2]. 

Geometric intuition plays an important role in many aspects of Hilbert space theory. The theory of Hilbert space is 

a fundamental tool for non-relativistic quantum mechanics. Applying this theory linear, topological, metric, and normed 

spaces may be all aymptotically addressed in an  ento-epidemiological, geoclassfiable, oviposition, sub-meter 

resolution,  gri-stratifiable, forecast, vulnerability, eco-endmember, LULC, signature, malaria, mosquito, frequency 

model for optimally  aymptotically, geo-spectrotemporally targeting, seasonal, eco-georeferenceable, unknown, 

hyperproductive foci. Exact analogs of the Pythagorean theorem and parallelogram law hold in a Hilbert space [4]. At a 

deeper level, perpendicular projection onto a subspace (the analog of "dropping the altitude" of a triangle) plays a 

significant role in optimization problems and other aspects of the theory.  

An element of a Hilbert space may be uniquely specified for in  an oviposition, malaria, mosquito, aquatic, larval 

habitat,empirical, geoclassifiable  non-heuristically optimizable, LULC, regressable dataset of  uncoalesced, eco-

georefereneced, sub-meter resolution, eco-endmember, geosampled, habitat coordinates based on capture point, 

coordinate axes. Thereafter based on  orthonormality, prolific, seasonal, ento-endmember geo-spectrotemporal, capture 

points may be identified in a prognosticative, signature, frequency,  vulnerability, LULC  model framework  in analogy 

with Cartesian coordinates in the plane.When that set of axes is countably finite, this means that the Hilbert space can 

also usefully be thought of in terms of the space of  sequences [4], which may be usable for optimally  asymptotically, 

geo-spectrotemporally targeting, unknown, seasonal, sub-pixel, LULC, hyperproductive, eco-endmember foci. 

The L
p
 spaces are function spaces defined using a natural generalization of the p-norm for finite-

dimensional vector spaces [4]. They are sometimes called Lebesgue spaces. L
p
 spaces form an important class 

of Banach spaces in functional analysis, and of topological vector space which may optimally asymptotically, geo-

spectrotemporally target, unknown, seasonal, eco-georeferenceable, malaria, mosquito, oviposition, sub-meter 

resolution, hyperproductive, aquatic, larval habitat, LULC, eco-endmember, capture point foci. The elements of 

topological vector spaces are typically functions or linear operators acting on topological vector spaces, and the 

topology is often defined so as to capture a particular notion of convergence of sequences of functions[4]. 
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The notions above are not as unfamiliar as they might at first appear. The customary acceptance of the fact that 

any geosampled,  eco-georeferenceable, ento-ecoepidemiological, sub-meter resolution, grid-stratifiable, geo-

spectrotemporal, eco-endmember,geosampled, LULC x, signature, frequency, eco-cartographic variable representing a 

seasonal, unknown, hyperproductive, malaria, mosquito, endmember foci has a decimal expansion is an implicit 

acknowledgment that a particular Cauchy sequence of rational numbers (e.g.,  frequency, density, larval counts whose 

terms are the successive truncations of the decimal expansion of x) has the real limit x. In some cases it may be difficult 

to geoclassify and describe x independently in an eco-endmember, vector, arthropod, prognosticative, endemic, malaria, 

mosquito, signature, aquatc, larval habitat, LULC, vulnerability model. In such circumstances, a limiting process may 

be employable for optimally log-tranforming, geosampled, regression-related,  eco-endmember, unmixed, LULC,  

capture point outliers.An associated sesquilinear form may be an inner product in an oviposition, sub-pixel, ento-

epidemiological, endemic,oviposition, prognosticative, ento-geoclasssified, geospectrotemporal, LULC, malaria, 

mosquito model which may be defined by M where the function  from C
n
 × C

n
 to C mayis all x and y in C

n
, and y

*
 is the 

complex conjugate of y whence optimally asymptotically targeting unknown, seasonal, prolific foci. In mathematics, 

a sesquilinear form is a generalization of a bilinear form that, in turn, is a generalization of the concept of the dot 

product of Euclidean  space[4]. A bilinear form is linear in each of its arguments, but a sesquilinear form allows one of 

the arguments to be "twisted" in a semilinear manner[2]. For any complex matrix M, this form may be  linear in each 

optimizable, mosaicked, LULC signature frequency, model estimate employed for  optimally asymptotically targeting 

seasonal, eco-georeferenecable,unknown, hyperproductive, oviposition, malaria, mosquito, aquatic, larval habitat, sub-

meter resolution,imaged, grid-stratifiable capture points. Hence, the model form would involve an inner product in the 

prognosticative, vulnerability, ento-endmember, signature LULC,capture point estimate dataset on C
n
  which would 

occur if and only if the geosampled,eco-georefereneceable,ento-epidemiological,known, hyperproductive, regressable, 

geo-spectrotemporal, geoclassifiable, signature, foci estimators  are positive for all nonzero z; that is if and only if M is 

positive definite. Optimally every inner product on C
n
 in the model would arise in this fashion from a Hermitian 

positive definite matrix which may enable optimally asymptotically targeting, un-geosampled, seasonal, capture point, 

aquatic, larval habitat, endemic foci. 

   A Gram matrix of linearly independent vectors may be optimally employable as a grid-stratifiable, optimizable, 

ento-endmember, LULC, signature, frequency, estimator in an ento-epidemiological, sub-meter resolution, oviposition, 

forecast, vulnerability, signature, capture point, malaria, mosquito, forecast,vulnerability model. If  a malariologist or 

medical entomologist  applies a list of n linearly independent, eco-endmember, geoclassified, LULC, oviposition, 

malaria mosquito, capture point, geosampled vectors of some complex vector space with an inner product, he or she 

may be able to optimally regressively select, hyperproductive, eco-georferenceable, aquatic, larval habitat,capture point, 

endmember foci. It may be verifiable in SAS that the Gram matrix M of those vectors, defined by the ento-

ecoepidemiological, prognosticative,  endemic, oviposition,sub-meter resolution, LULC model is always positive 

definite. Conversely, if M is positive definite in the, prognosticative, vulnerability, ento-endmember, signature, 

frequency, oviposition, LULC model it will have an eigen-decomposition co-factor which may be measurable by 

P
−1

DP where P is unitary, D diagonal, and all diagonal elements Dii = λi of D are real and positive. Let E be the real 

diagonal matrix with entries  in a malaria mosquito, signature model for optimally aympototically forecasting LULC, 

endemic, capture point, ento-ecoendmember,signature, frequency foci thereafter, then  the columns of EP would be 

linearly independent and  M would be the Gram matrix which could employ  the standard inner product of C
n
 for 

optimally  targeting, unknown, eco-georeferenceable, sub-meter resolution, seasonal, grid-stratifiable,  hyperproductive, 

aquatic, larval habitats. 

The kth leading principal minor of a matrix M is the determinant of its upper-left k by k sub-matrix. Its leading 

principal minors are all positive. It turns out that a matrix is positive definite if and only if all these determinants are 

positive [2]. This condition is known as Sylvester's criterion, and provides an efficient test of positive definiteness of a 

symmetric real matrix.  

 In mathematics, Sylvester’s criterion is a necessary and sufficient criterion to determine whether a Hermitian 

matrix is positive-definite. Sylvester's criterion states that a Hermitian matrix M is positive-definite if and only if all the 

following matrices have a positive determinant:1)the upper left 1-by-1 corner of M, 2) the upper left 2-by-2 corner 

of M,3) the upper left 3-by-3 corner of M; and, 4) M itself[3]. In other words, all of the leading principal minors must be 

positive in order for an ento-endmember, geo-spectrotemporal, geoclassifiable, sub-meter resolution, prognosticative, 

LULC, signature model to robustly asymptotically, optimally target seasonal, eco-georeferenceable hyperproductive, 
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malaria, mosquito, aquatic, larval, habitat, capture points. In linear algebra, a minor of a matrix A is the determinant of 

some smaller square matrix, cut down from A by removing one or more of its rows or columns[2]. Minors obtained by 

removing just one row and one column from square matrices (first minors) are required for calculating matrix cofactors, 

which in turn are useful for computing both the determinant and inverse of square matrices[4].  

An analogous theorem holds for characterizing positive-semidefinite Hermitian matrices, for 

optimally,aymptotically targeting seasonal, hyperproductive,  eco-georeferenceable, malaria, mosquito,aquatic, larval 

habitat ungeosampled  foci;therefore, it may be  no longer sufficient to consider only the leading principal minors in 

these ento-epidemiological, LULC, forecast, vulnerability, eco-endmember, signature, geo-spectrotemporal, frequency 

paradigms. A Hermitian matrix M is positive-semidefinite if and only if all principal minors of M are nonnegative [2]. 

A positive semidefinite matrix is a Hermitian matrix all of whose eigenvalues are nonnegative [4]. 

A square matrix is called Hermitian if it is self-adjoint. Thus, a positive-semidefinite, sub-meter resolution, 

grid-stratifiable, eco-endmember, LULC, geo-spectrotemporal,oviposition, malaria, mosquito, forecast, capture point, 

aquatic, larval habitat, explanatory, regression model may be optimally usable for asymptotically targeting seasonal, 

hyperproductive, malaria, mosquito, eco-georeferenceable, foci. A Hermitian matrix  may be optimally 

definable as one for which whence   exists in the ento-epidemiological, LULC, malaria, mosquito model for 

asymptotically, optimally targeting, eco-georeferenceable, seasonal, hyperproductive, eco-endmember foci but only if it 

denotes the conjugate transpose. The conjugate transpose of an  matrix  could be the  matrix defined 

by where  denotes the transpose of the matrix  and  denotes the conjugate matrix [2]. Conjugate matrix 

is a matrix  obtained from a given matrix  by taking the complex conjugate of each element of  [4](i.e., 

) . 

Employing a matrix X in a similarity transformation  of a given matrix  is also known as 

conjugating  by [4]. In this case,  and  are known as similar matrices.Two square matrices  and  that 

are related by where  is a square nonsingular matrix are said to be similar [2]. A transformation of the 

form  is called a similarity transformation, or conjugation by  X  [4]. For example, and  in an 

oviposition, LULC, eco-endmember, ento-epidemiological, geo-spectrotemporal, forecast, vulnerability, oviposition, 

malaria, mosquito,  sub-meter resolution, signature, frequency, model ouptput would be similar under conjugation 

by  whence asymptotically  geo-spectrotemporally, targeting unknown, hyperproductive, seasonal, malaria, 

mosquito,aquatic, larval habitat, eco-georeferenceable, capture points. Similar matrices may represent the same linear 

transformation after a change of basis for the domain and range simultaneously in the geo-spectrotemporal, 

geosampled, grid-stratified, LULC, model output. Recall that a matrix corresponds to a linear transformation, and 

a linear transformation corresponds to a matrix after choosing  abasis , [see 4]. Changing 

the coefficients of the matrix, [e.g.,  ]may aid in asymptotically, precisely targeting 

unknown, iteratively, interpolative, seasonal, hyperproductive, aquatic, larval habitat, eco-endmember, eco-

georeferenceable foci as rendered from a sub-meter resolution, geosampled, malaria, mosquito, sub-meter resolution, 

grid-stratifiable, capture point, oviposition, multivariate, krigable, LULC dataset of uncoalesced, signature frequencies 

employing the standard basis vectors, where  is the matrix  utilizing the basis vectors . In so doing, 

the conjugate transpose or Hermitian transpose of an m-by-n matrix A with complex entries obtained from A  may 

regressively quantitate the complex conjugate of each geosampled, oviposition, geoclassifiable,  LULC, sub-meter 

resolution,  malaria, mosquito, regression, grid-stratifiable, model entry. In so doing, unknown, hyperproductive, eco-

endmember, eco-georeferenceable, seasonal, hyperproductive, unknown, mosquito, aquatic, larval habitats may be 

remotely identified. 
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The conjugate transpose of a matrix A is implementable in the Wolfram 

Language as ConjugateTranspose[A].If a matrix is equal to its own conjugate transpose, it is said to be self-adjoint and 

is called a Hermitian[4].The conjugate transpose of a matrix product is given by [2].Using the 

identity for the product of transpose in an oviposition, sub-meter resolution, grid-stratifiable, malaria mosquito, forcast, 

vulnerability,eco-endmember, LULC, signature, frequency model could render 

= = = = = when Einstein summations are employed to sum over 

repeated indices of geosampled, capture point, frequency, larval, density counts. Hence it follows 

that could occur in the frequency, vulnerability, model, diagnostic output whence asymptotically, geo-

spectrotemporally, targeting seasonal, eco-endmember, unknown, eco-georeferenceable,hyperproductive, aquatic, 

larval, habitat foci. 

Einstein summation is a notational convention for simplifying expressions 

including summations of vectors, matrices, and general tensors[4]. There are essentially three rules of Einstein 

summation notation, namely:1)Repeated indices are implicitly summed over, 2)Each index can appear at most twice in 

any term: and, 3) Each term must contain identical non-repeated indices of quantitable, products ( e.g., signature 

malaria mosquito, oviposition, regression model tabulizable eco-endmember, LULC values) [6].The first item on the 

above list may be employable to greatly simplify and shorten equations involving tensors in an eco-endmember, sub-

meter resolution, geo-spectrotemporal, oviposition, malaria, mosquito, forecast, vulnerability,geo-spectrotemporal 

LULC, signature model for asymptotically, targeting unknown, seasonal, hyperproductive, aquatic, larval habitat, grid-

stratifiable, eco-georeferenceable, frequency-related, capture point foci. 

An th-rank tensor in -dimensional space is a mathematical object that has  indices and  components and 

obeys certain transformation rules. Each index of a tensor ranges over the number of geoclassifiable dimensions 

of space.For example,   in  Einstein's theory of Special Relativity, Euclidean three-space plus time (the "fourth 

dimension") are unified into the so-called Minkowski space. Minkowski space is a four-dimensional space possessing 

a Minkowski metric, (i.e., a metric tensor having the form [4]. 

Unfortunately, the dimension of the space is largely irrelevant in most tensor equations employed in medical 

entomological literature (with the notable exception of the contracted Kronecker delta used by Griffth 2005 and Jacob 

et al. 2009). In mathematics, the Kronecker delta  is a function of two variables, usually just positive discrete 

integers(e.g., aquatic larval  geosampled,  malaria, mosquito, eco-endmember, LULC,geosampled, geo-spectrotemporal 

data)[2]. Tensors are generalizations of scalars (that have no indices), vectors (that have exactly one index), and 

matrices (that have exactly two indices) to an arbitrary number of indices [4]. 

The notation for a tensor is similar to that of a matrix (i.e., ), except that a 

tensor , , , etc., may have an arbitrary number of indices especially in  a sub-meter resolution, 

ento-epidemiological, prognosticative, geo-spectrotemporal, malaria, mosquito, oviposition, eco-endmember, LULC, 

signature, frequency  model employed for asymptotically, geo-spectrotemporally,optimally targeting 

seasonal,unknown, hyperproductive foci. In addition, a tensor with rank  may be of mixed type , consisting 

of  so-called "contravariant" (upper) indices and  "covariant" (lower) indices. Note that the positions of the slots in 

which contravariant and covariant indices are placeable in an ento--epidemiological, vector arthropod, geo-

spectrotemporal, frequency, LULC, signature model which may be significant  for rendering timely vulnerability 

forecasts of seasonal, un-geosampled, aquatic, larval habitat, eco-endmember, hyperproductive foci. For 

example,  would be distinct from  in an, oviposition, endemic, malaria, mosquito, grid-stratifiable, forecast,  

endmember, signature model, whence asymptotically targeting, unknown sub-meter resolution, geo-specrotemporal, 

ento-ecoepidemiological, hyperproductive, malaria, mosquito, eco-georeferenceable, aquatic, larval habitat, seasonal 

foci.  

While the distinction between covariant and contravariant indices must be made for general tensors, the two 

are equivalent for tensors in 3-D Euclidean space, and such tensors are known as Cartesian 
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tensors.In geometry and linear algebra, a Cartesian tensor employs  an orthonormal basis to represent a tensor in 

a Euclidean space in the form of components ( uncoalesced, eco-endmember, sub-mter resolution, grid-stratified, 

malaria , mosquito, seasonal, hyperproductive, un-geosampled ,aquatic, larval, habitat, foci)[4].  A set of vectors form 

an orthonormal set if all vectors in the set are mutually orthogonal and all of unit  length [2]. Converting a tensor's 

components from one such basis to another in a sub-meter resolution, eco-georefereneceable, geo-spectrotemporal, 

oviposition, malaria, mosquito, forecast, vulnerability, grid-stratifiable, LULC model for optimally asymptotically, geo-

spectrotemporally targeting unknown hyperproductive, aquatic, larval habitat, eco-endmember, geoclassifiable,  capture 

points may utilize  an orthogonal transformation. The construction of orthogonality of vectors is motivated by a desire 

to extend the intuitive notion of perpendicular vectors to higher-dimensional spaces [4]. In the Cartesian plane, 

two vectors are said to be perpendicular if the angle between them is 90° (i.e. if they form a right angle [2]). This 

definition can be formalized in Cartesian space for optimally eco-cartographically robustly predicting, unknown, eco-

georeferenceable, un-geosampled, geolocations of   sub-meter resolution sub-pixel, grid-stratifiable, orthogonal, 

seasonal, LULC,  hyperproductive, malaria, mosquito foci by delineating the dot product and specifying that two 

vectors in the plane that are orthogonal but only if their dot product is zero. Similarly, the construction of the norm of a 

vector in a forecast, vulnerability, malaria, mosquito, capture point, oviposition,LULC, signature, sub-meter resolution, 

frequency  model  may be  motivated by a desire to extend the intuitive notion of the length of a remotely captured, 

malaria mosquito, seasonal, vector arthropod, aquatic larval habitat,capture point  to higher-dimensional spaces whence 

optimally, asymptotically,  geo-spectrotemporally targeting seasonal, unknown, eco-endmember, eco-georeferenceable, 

hyperproductive foci. In Cartesian space, the norm of a vector may be the square root of the vector dotted with itself  

[2]. 

The most familiar coordinate systems are the 2-D and 3-D Cartesian coordinate systems [4]. Cartesian tensors 

may be employable within any Euclidean space, or more technically, for any finite-dimensional vector space,   field of 

signature, geosampled, sub-meter resolution, grid-stratifiable, geo-spectrotemporal, oviposition, malaria, mosquito, 

geoclassifiable, LULC, eco-endmember, LULC, capture points  that have an inner product for optimally, 

asymptotically, geo-spectrotemporally  targeting sesasonal, hyperproductive, eco-georeferenceable, un-geosampled, 

aquatic, larval habitat, foci.Use of Cartesian tensors occurs in physics and engineering, such as with the Cauchy stress 

tensor and the moment of inertia tensor in rigid body dynamics[6].  

Sometimes general curvilinear coordinates are convenient, as in high-deformation continuum mechanics, or 

even necessary, as in general relativity. While orthonormal bases may be found for some such coordinate systems 

(e.g. tangent to spherical, explanative, LULC, frequency, empirical datasets of seasonal, malaria, mosquito, 

hyperproductive, un-geosampled, eco-georeferenceable, capture point coordinates), Cartesian tensors may provide 

considerable simplification. Further, applications in which rotations of rectilinear coordinate axes are required in a 

vector arthropod, LULC, ento-endmember, signature, frequency model may be non-heuristically optimizable employing 

sub-meter resolution, forecast, vulnerability, geo-spectrotemporal, risk model, capture point  estimators for 

asymptotically, targeting seasonal, eco-georeferenceable, hyperproductive, unknown foci. The transformation would be 

a passive transformation, since the ento-geosampled seasonal, prolific, capture point, LULC coordinates would be 

changed but not in the physical prognosticative, eco-endmember,  aquatic, larval habitat, modeling system. 

Objects that transform like zeroth-rank tensors are called scalars while those that transform like first-rank 

tensors are called vectors, and those that transform like second-rank tensors are called matrices [4]. In tensor notation in 

a sub-meter resolution, grid-stratifiable, eco-endmember, LULC, malaria, mosquito, forecast, vulnerability, geo-

spectrotemporal, frequency, risk model, a vector  could be written , where , ..., , and matrix is a tensor of 

type , which could be written  in tensor notation.Tensors may be operated on by other tensors (such as metric 

tensors, the permutation tensor, or the Kronecker delta), or by tensor operators (such as the covariant derivative)[2]. The 

manipulation of tensor indices in an ento-epidemiological, oviposition, sub-meter resolution, grid-stratifiable,  forecast, 

vulnerability, eco-endmember, geoclassifiable, LULC, signature, frequency model may enable  asymptotically, geo-

spectrotemporally targeting unknown, eco-georeferenceable, seasonal, hyperproductive, aquatic, larval habitat,capture 

point foci by  producing identities.This includes index lowering and index raising as special cases. These can be 

achieved through multiplication by a so-called metric tensor , , , etc., e.g., = , = [3]. Tensor 

notation may provide a very concise way of writing vector and more general identities in these forecast ento—

epidemiological, LULC models. For example, for optimally quantitating tensor notation in an oviposition,  malaria, 

mosquito, predictive, geo-spectrotemporal, sub-meter resolution, geoclassifiable, LULC, signature, frequency 
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vulnerability model for asymptotically targeting, seasonal, unknown, eco-endmember, hyperproductive, aquatic, larval 

habitat foci, the dot product  may be  simply written as where repeated geosampled, larval, count 

indices may be summed over Einstein summations. The generalization of the dot product applied to tensors is 

called tensor contraction, and consists of setting two unlike indices equal to each other and then summing using 

the Einstein summation convention[2]. Similarly, the cross product may be concisely written 

as where  may be the permutation tensor in an eco-endmember, geo-spectrotemporal, sub-meter 

resolution, signature, forecast, vulnerability, frequency,   LULC model for asymptotically geo-spectrotemporally 

targeting seasonal, eco-georeferenceable, foci. The permutation tensor, also called the Levi-Civita tensor is 

a pseudotensor which is antisymmetric under the interchange of any two slots[4]. Recalling the definition of 

the permutation symbol in terms of a scalar triple product of the Cartesian unit vectors, 

[6], the pseudotensor in an oviposition, LULC sub-meter resolution, geo-

spectrotemporal,  grid-stratifiable, eco-endmember, forecast, vulnerability model for  optimally asymptotically targeting 

unknown, seasonal, eco-georeferenceable, hyperproductive, aquatic, larval habitat, capture point foci may be  a 

generalization to an arbitrary basis as defined by =  

and = where . Also   are 

the metric tensor.  which may be  nonzero if  the vectors are linearly independent in the model.When 

viewed as a tensor, the permutation symbol is sometimes known as the Levi-Civita tensor[2]. The permutation 

tensor  of rank four is important in general relativity which has components which may be definable 

as [3]. The rank four permutation tensor may satisfy the 

identity  in an oviposition, geo-spectrotemporal,  geosampled, aquatic, larval habitat, malaria, 

mosquito, predictive vulnerability, grid-stratifiable, LULC, signature, frequency, eco-endmember  model. A 

transformation of the geosampled, ento-epidemiological, illuminative, geosampled, variables of a tensor may change 

the tensor into another whose asymptotically regressable aquatic, larval, habitat, malaria, mosquito, capture point 

components are linear homogeneous functions of the components of the original tensor. In so doing, unknown, 

seasonal, eco-georeferenceable, malaria, mosquito, capture point, iteratively, interpolative, eco-endmember foci may be 

optimally, remotely identified. 

A tensor space of type  may be geo-spectrotemporally definable as a vector space tensor 

product between  copies of vector fields and  copies of the dual vector fields, (i.e., one-forms) in an ento-endmember, 

sub-meter resolution, grid-stratifiable, forecast, vulnerability,  oviposition, LULC model for optimally, asymptotically, 

remotely targeting unknown, seasonal, eco-georefernceable, malaria, mosquito, hyperproductive, capture point foci.  

For example, may be the vector bundle of -tensors on a manifold ,  in an  

ento-epidemiological, LULC, vector arthropod, forecast, sub-meter resolution, grid-stratifiable, signature, vulnerability, 

frequency  model where  is the tangent bundle of  and  is its dual. Tensors of type  form a vector space 

[2]. This description may be generalizable to any tensor type in any vulnerability,eco-endmember, malaria mosquito, 

oviposition, LULC model, and an invertible linear map may be induced for robustly constructing, 

interpolative, seasonal, unknown, hyperproductive, aquatic, larval habitat, capture point, eco-endmember, explanative, 

foci, time series, probilistic, risk maps (e.g.,  ), whence  is the dual vector 

space and  the Jacobian is optimally definable by  whence   is the pullback map of a 

form as defined employing the transpose of the Jacobian. This definition can be extended similarly to other tensor 

products of  and  in any, forecast, vulnerability, seasonal, malaria, mosquito, capture point, geo-

spectrotemporal,signature,eco-endmember, capture point,LULC sub-meter resolution, model output. When there is a 

change of eco-georeferenceable, coordinates, then tensors transform similarly, with the Jacobian of the linear 
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transformation [6].This may be associated to the condition where  denotes the complex conjugate in the  

grid-stratifiable, aquatic, larval, habitat vector arthropod, geo-spectrotemporal, geosampled paradigm.  

As a result of this definition  the diagonal elements  of a Hermitian matrix could be the geosampled, 

aquatic, habitat, count,capture point,eco-georeferenceable, frequency,larval density counts as rendered from a  sub-

meter resolution imaged, grid-stratifiable, hyperproductive,  seasonal, malaria, mosquito foci (since ), while 

other elements may be complex.Examples of  Hermitian matrices include and the Pauli 

matrices ,=  and = [2].Examples of  Hermitian matrices may also be included whence 

regressively optimally quantitating an empirical, frquency dataset of uncoalesced, oviposition, capture point, iteratively 

interpolative, signature, LULC frequencies [see 1].An integer or real matrix is Hermitian if it is symmetric[4]. A 

matrix  may be tested to see if it is Hermitian using the Wolfram Language functionHermitianQ[m_List?MatrixQ] 

:=m === Conjugate@Transpose@m which may be frequentistically employable in a sub-meter resolution, eco-

endmember,oviposition, ento-epidemiological, LULC, signature, model for optimally asymptotically, geo-

spectrotemporally targeting seasonal, eco-georeferenceable,  hyperproductive, capture point, aquatic, larval, habitat 

foci. 

Hermitian matrices have real eigenvalues whose eigenvectors form a unitary basis which may be employable 

for optimally constructing geo-spectrotemporal, geosampled, malaria, mosquito, eco-endmember, geoclassifiable, 

LULC, signature, frequency models for optimally asymptotically targeting, eco-georeferenceable, seasonal, 

hyperproductive, aquatic, larval habitat foci. For real matrices, Hermitian is the same as symmetric 

[5].Any matrix C which is not Hermitian can be expressed as the sum of a Hermitian matrix and a antihermitian matrix 

[4].  

A continuous, explanatorial, differentiable function of several eco-endmember LULC, geosampled, malaria 

mosquito, oviposition, capture point, wavelength, discontinuous variables may be  convex on a convex set if and only if 

its Hessian matrix of second partial derivatives is positive semidefinite on the interior of the convex set. ... f(x) ≤ a} 

with a ∈ R are convex sets. Let f(x) be a differentiable function in an explanatorial, diagnostic, eco-endmember, sub-

meter resolution, oviposition, malaria, mosquito, aquatic, larval habitat, forecast, vulnerability, geo-spectrotemporal, 

LULC, frequency,grid-stratifiable model. In so doing, the quadratic approximation to f(x) near some unknown, 

seasonal, eco-georeferenceable, un-geosampled, LULC, hyperproductive, capture point, ento-epidemiological, eco-

endmember grid-stratifiable foci x0 may be   given by f(x) = f(x0) + fx(x0)(x-x0) + ½fxx(x0)(x-x0)2 or, equivalently df 

= fx(x0)dx + ½fxx(x0)(dx)2 where dx=(x-x0) and df=f(x)-f(x0).  A critical point in such an LULC, geoclassifiable,  

vector arthropod, prognosticative, signature, frequency model would be the value of x0 such that fx(x0)=0. If fx(x0)=0 

then df = ½fxx(x0)(dx)
2
 in the model renderings.  

   For optimally tabulating a minimum in an eco-endmember, signature, prognosticative, geoclassifiable, grid-

stratifiable, LULC malaria, mosquito, oviposition, aquatic, larval habitat, explanative, time series, df and (dx)
2
 would 

have to be positive. Hence fxx(x0) has to be positive as well in the ento-ecoepidemiological, forecast, vulnerability, 

frequency, sub-meter resolution, LULC, capture point, grid-stratifiable, model output. On the other hand, for a 

maximum df to be negative requires fxx(x0) be negative in the frequency model [4]. The Hessian matrix for this case 

would be just then be 1×1 matrix [fxx(x0)]. Thereafter, the capture point at which the second set of geosampled, ento-

endmember, LULC, aquatic, larval, habitat,probabilistic, capture point, iterative, interpolative derivatives evaluated 

may not be expressed explicitly so the Hessian matrix would have to optimized by  fxx. There would be no 

corresponding constrained optimization problems in any single geosampled,  eco-endmember, geoclassified LULC, 

explanatory,signature, frequency,  thereafter, in any seasonal, malaria, mosquito, oviposition, vulnerability, modeling, 

case scenario but the forecasted, ento-epidemiological ouput   would not be able to determine geolocations of, sub-

meter resolution, grid-stratifiable, geoclassifiable, unknown, seasonal, hyperproductive, capture point, eco-endmember, 

eco-georeferenceable foci.
 

http://mathworld.wolfram.com/ComplexConjugate.html
http://mathworld.wolfram.com/PauliMatrices.html
http://mathworld.wolfram.com/PauliMatrices.html
http://mathworld.wolfram.com/IntegerMatrix.html
http://mathworld.wolfram.com/RealMatrix.html
http://mathworld.wolfram.com/SymmetricMatrix.html
http://www.wolfram.com/language/
http://mathworld.wolfram.com/RealNumber.html
http://mathworld.wolfram.com/Eigenvalue.html
http://mathworld.wolfram.com/Eigenvector.html
http://mathworld.wolfram.com/UnitaryBasis.html
http://mathworld.wolfram.com/RealMatrix.html
http://mathworld.wolfram.com/SymmetricMatrix.html
http://mathworld.wolfram.com/Matrix.html
http://mathworld.wolfram.com/AntihermitianMatrix.html


International Research Journal of Computer Science and Application                       

Vol. 2, No. 1, March 2018, pp. 1-181                                                                         

  Available Online at http://acascipub.com/Journals.php 
 

 

 

27 

Copyright © acascipub.com, all rights reserved 

In an eco-endmember, grid-stratifiable,  LULC, signature, aquatic, larval habitat,geo-spectrotemporal, 

vulnerability signature, frequency, eco-endmember model two variable case scenarios may be expected; the quadratic 

approximation would be  about the seasonal, geosampled, geo-spectrotemporal, hyperproductive, sub-meter resolution, 

geoclassifiable,capture  point (x0, y0) where  a differentiable eco-endmember, geosampled, LULC function f(x,y)  may 

be asymptotically defined as  df = fxdx + fydy + ½[fxxdxdx + fxydxdy + fyxdydx + fyydydy].This forecast, vulnerability, 

oviposition, predictive, malaria, mosquito, capture point, eco-endmember, geo-spectrotemporal, geo-spectrotemporal, 

signature,  frequency,LULC model may also be expressed in the form df = fxdx + fydy + ½(dx, dy)H(dx, dy)T where 

(dx, dy)T may be  the column vector which may be  the transpose of the row vector (dx, dy) and H= fxx    fxy |or fyx    fyy. 

For parsimoniously constructing an unconstrained, geosampled, sub-meter resolution, geo-spectrotemporal, 

malaria, mosquito, eco-endmember, oviposition, LULC, forecast, vulnerability, geo-spectrotemporal model, a critical 

point may be  one such that fx=0 and fy=0 so df = ½(dx, dy)H(dx, dy)
T
 for asymptotically targeting seasonal, unknown, 

hyperproductive, eco-georeferenceable foci. For a minimum the second order condition is that H be a positive definite 

matrix [4]. The conditon for a matrix to be positive definite is that its principal minors all be positive [2]. For a 

maximum, H must be a negative definite matrix which will be the case scenario if the principal minors alternate in sign 

in any ento-epidemiological, oviposition, sub-meter resolution, grid-stratifiable, signature, forecast, vulnerability model 

unbiased, frequency estimator for asymptotically targeting, hyperproductive, eco-georeferenceable, malaria, mosquito, 

aquatic, larval habitat, geo-spectrotemporal, eco-endmember, LULC foci.  

For the constrained oviposition, ento-epidemiological, malaria, mosquito, eco-endmember, geo-spectrotemporal, 

frequency, LULC model, a hyperproductive, capture point may be optimally definable in terms of the Lagrangian 

multiplier method. In mathematical optimization, the method of Lagrange multipliers is a strategy for finding the local 

maxima and minima of a function subject to equality constraints [4]. Suppose the constraint is pxx + pyy = 1 in an 

aquatic, larval habitat, prognosticative, ento-ecoepidemiological, vulnerability, vector, arthropod, LULC, signature, 

capture point model. Then the first orders would be fx = λpx and fy = λpy where λ, the Lagrangian multiplier may be 

chosen so as to have critical values which may satisfy the constraint in the model. In so doing, the quadratic 

approximation in the model may be expressed as df = λpxdx + λpydy + ½(dx, dy)H(dx, dy)
T
.Since any deviations from 

the critical point must also satisfy the constraint pxdx + pydy = 0 in an ento-ecoepidemiological, eco-georeferenceable, 

eco-geoclassifiable, signature, LULC, predictive,sub-meter resolution,  oviposition, geo-spectrotemporal, risk model 

[see[1], then df = λ(pxdx + pydy) + ½(dx, dy)H(dx, dy)
T
= ½(dx, dy)H(dx, dy)

T
 may occur in the data output when 

asymptotically targeting geo-spectrotemporal, geosampled, unknown, hyperproductive,capture point, aquatic, larval, 

habitat, eco-endmember foci. H may have to be either positive or negative definite for an extreme (maximum or 

minimum) as dx and dy may not be unrestricted (i.e., only dx and dy such that pxdx + pydy = 0 would be allowed) in the 

entomological LULC model output. This makes specifying the conditions such as asymptotically targeting seasonal, 

malaria, mosquito, aquatic, larval habitat,eco-georeferenceable, frequency, eco-endmember, LULC, foci on H very 

crucial. 

For a trinary function f (x,y,z) the quadratic approximation of the deviations as rendered in an oviposition eco-

endmember,  malaria, mosquito, sub-meter resolution, grid-stratifiable, LULC eco-georeferenceable,  forecast, 

vulnerability, signature, frequency  model df = fxdx + fydy + fzdz + ½(dx, dy, dz)H(dx, dy, dz)
T
 may be  given by 

    | fxx    fxy    fxz | 

H  =  | fyx    fyy    fyz | 

    | fzx    fzy    fzz | 

As in the one and two variable unconstrained case scenario, the first orderm eco-endmemberm oviposition, ento--

epidemiological, capture point, geo-spectrotemporal, eco-geoclassifiable, LULC terms would vanish and the conditions 

for a minimum would be based soley on the positive definiteness of H and similarly negative definiteness for the 

maximum which would be apparent in the eco-georeferenecable, prognosticative, malaria, mosquito, signature model, 

output dataset. Those conditions in turn can be stated in terms of the signs of the principal minors of H in the LULC 

model output in ArcGIS. The significance of this case is that the constrained two variable case scenario can be restated 

in terms of a three variable case through the use of the Lagrangian multiplier method for optimally geo-
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spectrotemporally asymptotically targeting seasonal, eco-georeferenceable, hyperproductive, capture point, aquatic, 

larval habitat, eco-endmember foci.  

In the Lagrangian multiplier method the optimization problem of minimizing f(x,y) with respect to x and y 

subject to the constraint pxx + pyy = I may be transformed into a three variable problem of unconstrained minimizing 

L(x,y,λ) = f(x,y) - λ(pxx + pyy - I)with respect to x, y and λ for optimally asymptotically targeting unknown, seasonal, 

eco-georeferenceable,  malaria, mosquito, hyperproductive, signature, aquatic, larval, habitat foci frequencies. The first 

order condition for λ is Lλ = pxx + pyy - I = 0 which may be equivalent to satisfying the constraint in the oviposition, 

sub-meter resolution, grid-stratifiable, eco-endmember, geoclassifiable, LULC, malaria mosquito, capture point, 

model.The quadratic approximation for L(x,y,λ) could  then be  optimally described as  dL = Lxdx + Lydy + Lλdλ+ 

½(dx, dy, dλ)H*(dx,dy,dλ)
T
 which on the basis 

of the definition of L in the ento-epidemiological, forecast, vulnerability, model could  reduce to  

dL=fxdx+fydy+(pxx+pyy-I)dλ+½(dx,dy,dλ)H*(dx,dy,dλ)
T
  for the first order conditions to  

dL=λpxdx+λpydy+(pxx+pyyI)dλ + ½(dx, dy, dλ)H*(dx, dy, dλ)
T
. Because of the contentment of the constraints, the first 

two terms in the eco-epidemiological, explanatory, LULC residual, sub-meter resolution, signature, frequency, model 

output will reduce to zero and likewise the third term. Thus, the value of dL could be given by dL = + ½(dx, dy, 

dλ)H*(dx, dy, dλ)
T
whence  optimally asymptotically geo-spectrotemporally, targeting seasonal, eco-georeferenceable, 

hyperproductive, capture point, aquatic, larval habitat,  eco-endmember foci on specific geoclassified LULCs ( e.g., 

post-tillering, agro-irrigation, riceland ditches). 

The second order conditons for the constrained two variable case in an oviposition, sub-meter resolution, grid-

stratifiable, eco-endmember, LULC, malaria, mosquito, forecast, vulnerability, eco-epidemiological, signature, 

frequency model for optimally asymptotically, remotely, geo-spectrotemporally targeting, seasonal, eco-

georeferenceable,unknown, hyperproductive, aquatic, larval, habitat foci can be stated in terms of the Hessian H* for 

the corrsponding three variable case scenario. The character of H* may be given by first noting thatLx=fx-λpx Ly=fyλpy 

and Lλ = -(pxx + pyy - I) in the,forecast, model preliminary output. Consequently, the second derivatives for the ento-

ecoepidemiological eco-endmember oviposition, malaria, mosquito, geosampled, geo-spectrotemporal, capture point, 

signature, LULC data may be given as:  

 

 

 

Suppose f is a function of one geosampled, sub-meter resolution, grid-stratifiable, eco-endmember, malaria, 

mosquito, orthogonal, LULC geosampled signature, variable in an non-heuristically optimizable, frequency, 

prognosticative, vulnerability model framework that is at least two times continuously differentiable around a seasonal, 

hyperproductive, capture point in its domain, when . Then, there would exist  such that for any 

. The sequence may be parsimoniously extractable  by applying Newton's method for root-

finding  a function of one eco-endmember, sub-resolution, geosampled, signsture, frequency, grid-stratifiable, 

geoclassifiable, spectrotemporal, geosampled, LULC variable starting from  which would either reach the root in 

finitely many steps or via quadratic convergence or higher-order convergence to the root  . 

A Newton method based on the Hessian approximation H=g ′ (x) ∗ g ′ (x)∂x may be employable to optimally 

quantitate, eco-epidemiological, geosampled, oviposition, geo-spectrotemporal, empricial, regressable, malaria, 

mosquito, geoclassifiable, LULC datsets of eco-georeferenceable, seasonal, hypeproductive, aquatic, larval habitat, 

oviposition, capture point, sub-meter resolution, unknown, eco-endmember foci Technically, a malariologist or medical 

entomologist may only quantitate first-derivatives in these models. According to Jacob et al. [1] a sequence 

{xi}subscriptxi\{x_{i}\} in an epi-entomological, vector arthropod, oviposition, prognosticative, geo-spectrotemporal, 

eco-endmember, LULC, sub-meter resolution, vulnerability, grid-stratifiable, frequency model  in metric space (X,d)Xd 

    | fxx    fxy    -px | 

H*  =  | fyx    fyy    -py | 

    | -px    -py    0   | 
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is said to converge quadratically to x*superscriptxx^{*} if there is a constant 1>c>01c01>c>0 such that 

d⁢(xi+1,x*)≤c⁢d⁢(xi,x*). 

To obtain a robust expression for optimally, asymptotically,  targeting, prolific, seasonal, malaria, mosquito, 

hyperproductive, aquatic, larval habitat, signature, eco-endmember, eco-georefernceable foci, a malariologist or 

medical entomologist   may need information about how the second-derivative of J is constructed and not just g in a 

forecast, vulnerability, LULC, sub-meter resolution, malaria, mosquito model. Under the right assumptions, a 

superlinear convergence may be obtainable for conducting an approximation for an ento-endmember, oviposition, 

signature, geo-specified, LULC dataset of uncoalesced,  seasonal, eco-georeferenceable, hyperproductive, capture point, 

malaria, mosquito, aquatic, larval habitat, seasonal foci. 

The Ostrowski theorem is a classical result which ensures the attraction of all the successive approximations 

xkC1G (xk) near a fixed, oviposition, malaria, mosquito, capture point x* (e.g., agro-irrigated eco-georeferenceable, 

geosampled, seasonal, hypeproductive, aquatic, larval, habitat, LULC foci). Let be a matrix with positive 

coefficients and be the positive eigenvalue in the Frobenius theorem, then the  tabulated eigenvalues  

may satisfy the inequality where = and  = and , 2, ...,  [3]. 

In  mathematics, Frobenius' theorem gives necessary and sufficient conditions for finding a maximal set of 

independent solutions of an underdetermined system of first-order homogeneous, linear, partial differential 

equations[2]. For an eco-endmember, sub-meter resolution, geo-spectrotemporal, LULC,frequency dataset of malaria, 

mosquito, capture point, predictive, risk model, grid-stratifiable, geometric terms, the theorem could  provide  necessary 

and sufficient conditions for the existence of a foliation by maximal integral manifolds, each of whose tangent bundles 

may be  spanned by a given family of eco-georeferenceable, aquatic, larval habitat, vector fields. In so doing, the 

integrability condition in the capture point, ento-epidemiological, eco-endmember, LULC model may be satisfied in 

much the same way that an integral curve may be assigned to a single vector field. Although the theorem is 

foundational in differential topology and calculus on manifolds, in its most elementary form, the theorem can  address 

the problem of finding a maximal set of independent solutions for a regular system of first-order, linear, homogeneous, 

partial differential equations for geo-spectrotemporally, asymptotically optimally, remotely, targeting unknown, 

hyperproductive, eco-georeferenceable, eco-endmember,sub-meter resolution, LULC, oviposition, malaria, mosquito, 

seasonal, aquatic, larval habitat, capture points. 

 Different seasonal, eco-endmember, grid-stratified, oviposition, LULC conditions based on the magnitude of 

G′(x*) may provide lower bounds for the convergence order in an frequency-oriented, seasonal, malaria, mosquito, 

forecast, vulnerability, sub-meter resolution, immature,capture point model, construction process. Characterizing high 

convergence orders in the signature model terms may help aid in optimally asymptotically, remotely quantitating some  

eco-georeferenceable eco-endmember, LULC elements of G′(x*)(e.g., levels of infrequently shading in a capture point, 

seasonal, hyperproductive, geo-spectrotemporal, LULC, grid-stratifiable, imaged, aquatic, laval habitat,) for optimally 

asymptotically targeting un-geosampled, hyperproductive foci. A malariologist or medical entomologist may obtain a 

set of trajectories with high convergence orders for example, which may be restricted to some subspaces, regardless of 

the nonlinearity of G in an ento-epidemiological, time series, LULC, orthogonal, eco-endmember, signature, frequency, 

model output. A malariologist or medical entomologist may also analyze the stability of the successive approximations 

under perturbation assumptions. 

If a malariologist, medical entomologist or other experimenter  identifies a root of a system of equations 

F(x)=0, he or she may be able to asymptotically,  target, seasonal, hyperproductive, eco-georeferenceable, malaria, 

mosquito, epi-entomological, LULC foci  employing an oviposition, geosampled, datastet of uncoalesced, krigeable, 

sub-meter resolution, signature,  geo-spectrotemporal,model, frequency estimators  where x=(x 1 ,…,x n ) .Further, he 

or she may globalize Newton's method which  could formulate the problem as the optimization problem by employing 

min x  f(x)wheref(x):=12 ∥F(x)∥ 2 , in the forecast, vulnerability, eco-endmember model whence 

F(x)=⎡ ⎣ ⎢ f 1 (x)…f m (x) ⎤ ⎦ ⎥ ,∥F(x)∥ 2 =∑ i=1 m f i (x) 2 . In so doing, the gradient and Hessian of f may be robustly 

computed for the oviposition geosampled model, hyperproductive, capture point, geoclassifiable, LULC, signature, 
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regressable, aquatic, larval habitat, wavelength covaraites in terms of  : 

∇f(x)=J(x) T F(x),∇ 2 f(x)=J(x) T J(x)+∑ i=1 m if (x)∇ 2 f i (x),  where J is the Jacobian of  F, (i.e., the matrix whose  i -

th row is ∇f i (x) T  ∇fi(x)T ). 

 

By applying Newton's method to f and globalizing it employing a line search, (e.g., an Armijo line search) precise, 

eco-georeferenceable, eco-endmember, oviposition, LULC, grid-stratified  targets of seasonal, hyperproductive, 

malaria, mosquito, aquatic, larval habitat, capture point foci may be established. The procedure could be as follows: 

 

1. Compute Newton's direction by solving∇ 2 f(x k )d k =−∇f(x k ) ∇2f(xk)dk=−∇f(xk) in the optimizable, 

geosampled, geo-spectrotemporal, eco-endmember, malaria model, aquatic, larval, habitat, frequency, signature, 

count, density estimates. 

2. Compute a step size t∈(0,1]  such that f(x k +td k )≤f(x k )+αt∇f(x k ) T d k   starting from t=1 and halving  t 

until the inequality is satisfied ( i.e., the model converges on a seasonal,  hyperproductive, capture point foci). If 

d k   is a descent direction, this procedure is guaranteed to succeed. 

3. Set xk+1=xk+tdk for statistical verification of all ento-ecoepidemiological, geoclassified, LULC, eco-

georeferenceable, grid-stratfiable, model outputs. 

 

Because of the form of ∇ 2 f(x k ) ∇2f(xk),it may be necessary to modify an LULC, sub-meter resolution, grid-

stratifiable, oviposition, malaria, mosquito, aquatic, larval habitat, capture point, hyperproductive, eco-endmember, 

foci, forecast, vulnerability model to ensure that dk is a descent direction. If a malariologist or medical entomologist 

locally assumes that an ento-ecoepidemiological, frequency, LULC eco-endmember, oviposition, model can be a 

minimizer, it would not be necessary to modify any geosampled, grid-stratifiable, parameterizable, or semi-

paramterizable, capture point estimators (e.g., total seasonal, aquatic, larval habitat, frequency. density counts). If the 

sub-meter resolution, ento-epidemiological model converges, a minimizer could be established for the vector arthropod, 

geoclassifiable, LULC data when ∇ 2 f is positive definite. The approach could guarantee that t=1 at all iterations would 

be asymptotic in the model output.  

 

The drawback of this approach is that a malariologist or medical entomologist may converge to a stationary, 

oviposition, eco-endmember, gridded, frequency, LULC, malaria, mosquito, seasonal capture point, aquatic, larval, 

habitat, foci x ∗  x∗ of f (a minimizer) whence F(x)≠0 . However, this can only happen if J(x ∗)  is rank deficient. A 

matrix is said to have full rank if its rank equals the largest possible for a matrix of the same dimensions, which is the 

lesser of the number of rows and columns[4]. A matrix is said to be rank deficient if it does not have full rank [2]. 

Newton's method may aid in quadratic convergance of an  empirical, non-heuristically optimizable, frequency  

dataset of  eco-georeferenceable,geosampled, oviposition,LULC unmixed, sub-meter resolution,  oviposition, malaria, 

mosquito, geo-spectrotemporal,signature, model estimators for asymptotically targeting 

seasonal,geoclassifiable,hypeproductive, aquatic, larval, habitat, eco-endmember foci.This could be conducted  within 

a certain radius, since a self-concordant function is employable during the forecast, vulnerability, capture point, LULC 

model, construction process. Let Ω ⊆ Rn be a convex open set in the model. Then f : Ω → R may be  self-concordant 

with parameter rσ > 0 at x ∈[4].  The iteration will converge quadratically starting from any real initial guess a0 except 

zero in the eco-endmember, sub-meter resolution, LULC, malaria, mosquito, vulnerability model. When a0 is negative, 

Newton's iteration may converge to the negative square root of the geosampled, oviposition, malaria, mosquito, 

capture point, hyperproductive, aquatic, larval habitat, ento-endmember, un-geosampled, LULC foci. Quadratic 

convergence in the prognosticative, signature model then would mean that the square of the error at one 

iteration could be calculable proportional to the error at the next interpolatble iteration employing 

 [Equation 1.1].  So, for example if the error is 

recorded as a one significant digit employing one iteration in the model, then at the next iteration it would be two 

digits, then four, etc. A malariologist or medical entomologist may not be able to use equation [1.1] in place of the 

Newton iteration itself, as a capture point, oviposition, eco-endmember, LULC, frequency, model unbiased estimator, 

but he or she could  employ  to achieve at+1.Further, the factor of proportionality may be required for optimally, 

asymptotically, remotely targeting the eco-georeferenceable, seasonal, hypeproductive,malaria, mosquito, aquatic, 

larval, habitat foci. Notice, however, if a malariologist or medical entomologist takes this factor to be 1/(2at), then 

cancels and equation [1.1] becomes itself the Newton iteration. 
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Newton's iteration is an algorithm for computing the square root  of a number  via the recurrence 

equation where . This recurrence converges quadratically as . Newton's iteration 

is simply an application of Newton's method for solving the equation For example, when applied 

numerically, the first few iterations to Pythagoras's constant  are 1, 1.5, 1.41667, 1.41422, 1.41421, 

....The first few approximants , , ... to  may be then given 

by These may be also given by the analytic 

formula = =  which may be parsimoniously derived by noting 

that the recurrence can be written as which may have  the closed-form 

solution Solving for  in the geo-spectrotemporal, predictive, malaria, mosquito, 

LULC,eco-endmember model derivatives may render the solution derived above. 

Even though a malariologist or medical entomologist cannot estimate the rate of convergence by  in 

any eco-endmember, oviposition, sub-meter resolution, grid-stratifiable,  LULC,  ento-epidemiological, malaria, 

mosquito, forecast, vulnerability model (i.e.,s,),  an estimate of it may be quantitated by looking at the difference 

between the intermediate solutions employing two consecutive steps. For example, from equation 1.1 a malariologist or 

medical entomologist may write  then   . In so 

doing, the Newton iteration may not  overestimate the ultimate square root in the oviposition, sub-meter resolution, 

signature, frequency model for geo-spectrotemporally, remotely  targeting, seasonal, hyperproductive, eco-endmember, 

LULC, aquatic, larval, habitat foci.Since the second-order optimality conditions tell us that near the solution the 

Hessian will be positive definite, we can then rely on our convergence rate analysis under this assumption by using 

following notations. 

x = input, malaria, mosquito,capture point, geosampled, endmember, data points m*2 

y = labelled outputs(m) which may correspond to a seasonal, eco-georeferenceable, hyperproductive, aquatic, larval, 

habitat foci. 

 Eco-endmember, geo-spectrotemporal,  prognosticative,  signature, frequency, malaria, mosquito, capture 

point, sub-meter resolution,  orthogonal, geoclassfiable, LULC paradigms for orthogonally, asymptotically targeting 

seasonal, unknown, eco-georeferenceable, hyperproductive foci could focus on the frequency, signature,  conditional, 

probability distribution of y given x, rather than on the joint probability distribution of y and x, which would be  the 

domain of  multivariate analysis. In eco-georeferenceable, optimal,  prognosticative, vector arthropod, aquatic, larval 

habitat, capture point,LULC, risk mapping given two jointly distributed geosampled, random variables x and y, (e.g., 

Depth of habitat, Differentially corrected GPS geolocation of a seasonal, hyperproductive, eco-georeferenceable, 

capture point), the conditional probability distribution of y given x would be  the probability distribution of y when x is 

known to be a particular value ( e.g., total, immature, density count values of a prolific foci)[1]. In some cases the 

conditional probabilities may be expressible as LULC eco-endmember, explanatory functions containing the 

unspecified, aquatic, aquatic, larval, habitat, regressable value x as a parameter. When both "x" and "y" are categorical, 

aquatic, larval habitat, oviposition, capture point, geosampled, LULC, time series, frequentistically optimizable 

signature, iteratively  interpolative variables, a conditional probability table may be non-heuristically employable to 
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represent the conditional probability in an, oviposition, malaria, mosquito, eco-endmember model for optimally 

predictively targeting, unknown, eco-georeferenceable, seasonal, hyperproductive foci.  

In the study of probability, given at least two explanatorial, grid-stratifiable, eco-georeferenceable,signature, 

oviposition, sub-meter resolution, geoclassfiable, LULC, geo-spectrotemporal orthogonal, signature, frequency-

oriented, malaria, mosquito, aquatic, larval habitat, geosampled, capture point,  eco-endmember, random variables x, y, 

..., that are definable on a probability space, the joint probability distribution for x, y, ... could be a distribution that 

optimally renders the probability that each of x, y, ... falls in any particular range or discrete set of values specified for 

that variable[1]. The joint probability distribution may be then expressed from a regressed geomterical, geo-

spectrotemporal, geosampled, frequency dataset of   forecasted, seasonal, hyperproductive, malaria, mosquito, grid-

stratifiable, eco-georeferenceable, capture points either in terms of a joint cumulative distribution function or in terms of 

a joint probability density function (in the case of continuous geosampled oviposition,  geoclassifiable, LULC 

variables) or joint probability mass function (in the case of discrete, habitat, suitability variables). These vector 

arthropod, capture point, eco-endmember, LULC variables may be employable to find other types of unknown, geo-

spectrotemporal, malaria, mosquito, oviposition, seasonal distributions. For example, a marginal distribution may be 

calculable for rendering the probabilities of any regressed geoclassified, geo-spectrotemporal, oviposition, LULC 

dataset of empirically geosampled, eco-georeferenceable, malaria, mosquito, prognosticative, hyperproductive, 

endmember, variables with no reference to any specific ranges of the capture point, frequency, habitat, larval, density 

counts.  

However, the conditional probability distribution for rendering the probabilities for any subset of the unknown, 

eco-endmember, LULC oviposition, variables conditional on particular geo-spectrotemporal, aquatic, larval habitat, 

frqeuncy, count value may be tabulated and archived in a statistical database (e.g., PROC REG). Most commonly, the 

conditional mean of y given a geosampled, oviposition,  frequency, capture point, optimizable, explanatory, geo-

spectrotemporal, signature, LULC, malaria, mosquito, grid-stratfiable, eco-endmember value of x may be an affine 

function of x; less commonly, the median or some other quantile of the conditional, probabilistic distribution of y given 

x may be quantitatable as a linear function of x in a optical-geometric, forecast, eco-endmember, vulnerability, LULC 

ento-ecoepidemiological, geo-spectrotemporal model. In geometry, an affine transformation, affine map or an affinity is 

a function between affine spaces which preserves points, straight lines and planes [2]. 

Linear regression was the first type of regression analysis to be studied rigorously, and to be used extensively 

in seasonal, malaria, mosquito, aquatic larval habitat, predictive, LULC, risk mapping applications. This is because in 

general, oviposition, eco-endmember, grid-stratifiable, geoclassifiable, LULC malaria, mosquito, geo-

spectrotemporal,signature, frequency  models depend linearly on their seasonal, geosampled, parameterizable 

estimators   and are easier to fit than vulnerability models which are non-linearly related to their capture point, vector 

arthropod-related, aquatic, larval habitat, eco-georeferenecable, ento-ecoepidemiological,signature prognosticators. 

Further, the statistical properties of the resulting LULC, diagnostic, endmember, sub-meter resolution, geoclassifiable 

estimators rendered from a linear regression algorithm would be easier to quantitate for optimally determining 

geolocations of seasonal, hyperproductive, grid-stratifiable, malaria, mosquito, eco-georeferenceable, capture point foci. 

If the goal is prediction or error reduction, linear regression can be employed to fit a model to an observed dataset of y 

and x values [2]. After developing an ento-epidemiological, sub-meter resolution, geoclassifiable, LULC, forecast, 

vulnerability, foci model, if an additional value of x is regressed without its accompanying value of y, the fitted model 

may still be employable to make an optimal forecast of an un-geosampled, eco-georeferenceable, malaria, mosquito, 

hypeproductive, aquatic, larval habitat, capture point, seasonal, frequency, signature, eco-endmember value. 

An oviposition, time series geosampled, eco-endmember, prolific, grid-stratifiable, orthogonal, LULC, 

geosampled, malaria mosquito, optimizable variable y and a number of other ento--epidemiological, geosampled, sub-

meter resolution, aquatic, larval habitat, capture point frquency explanators X1, ..., Xp   may be regressively related to y 

in a linear, malaria, mosquito, forecast, vulnerability, time series analysis. The model constant may be one of the 

diagnostic regressors. For example, a malariologist or medical entomologist may employ xi1 = 1 for i = 1, ..., n in an 

aquatic, larval habitat, oviposition, sub-meter resolution, LULC, eco-endmember,prognosticative, signature model. The 

corresponding element of β in the vulnerability, malaria, mosquito, model would be then the intercept. According to 

Jacob et al. [5] employing the common convention that the horizontal axis represents an eco-endmember, eco-
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georeferenceable, optimizable, ento-epidemiological,   geoclassifiable, LULC,optimizable variable x whence the 

vertical axis represents a geosampled, geo-spectrotemporal, aquatic, larval, habitat, frequency, density count 

y,.Optimally this would render  a y-intercept or vertical intercept which may be realized as a hyperproductive, seasonal, 

capture point realization where the graph of a function or relation intersects the y-axis of the coordinate system. Many 

statistical inference procedures for parsimoniously constructing, linear, oviposition, malaria, forecast, vulnerability, 

eco-endmember, frequency LULC models may then be able to target, un-geosampled, ento-ecoepidemiological 

signature variables which could require an intercept to be present. Sometimes one of the eco-endmember, capture point, 

diagnostic, grid-stratifiable, LULC, signature, frequency regressors may be considered a non-linear function of another 

explanatorial oviposition regressor, as in polynomial  and segmented regression. In statistics, polynomial regression is a 

form of linear regression in which the relationship between the independent variable x and the dependent variable y is 

modelled as an nth degree polynomial. Segmented regression, also known as piecewise regression or 'broken-stick 

regression', is a method in regression analysis in which the independent variable is partitioned into intervals and a 

separate line segment is fit to each interval [2]. 

Nevertheless, an eco-endmember, sub-meter resolution, grid-stratifiable, geoclassifiable, LULC, ento-

epidemiolgical, oviposition, forecast, vulnerability, eco-georeferenceable, malaria, mosquito model for asymptotically, 

geo-spectrotemporally, remotely targeting unknown hyperproductive foci will remain linear as long as it is linear in the 

parameter vector β. The geosampled, geo-spectrotemporal, capture point, immature habitat  regressors xij may be 

viewed either as random variables, which may be  simply observed  by a malariologist or a medical entomologist, or 

they may be considered as predetermined fixed values. Both interpretations may be appropriate in various, grid-

stratifiable, malaria, mosquito, prognosticative, vulnerability, LULC, signature, wavelength, endmember modelling, 

case scenarios for optimally aymptotically targeting, seasonal, unknown, eco-georeferenceable, hyperproductive, 

aquatic, larval, habitat  foci which may lead to the same estimation procedures; however different approaches to 

asymptotic analysis are employable in these two situations. The endmember model outputs may be applicable to 

robustly quantify the strength of the relationship between y and the xj, in the signature, endmember, frequency, malaria, 

mosquito, LULC signature, oviposition, probability model to assess which xj may have no relationship with y at all. 

This method may also identify which subsets of the Xj in the regressed forecasted, ento-epidemiological, robustifiable 

dataset of seasonal, hyperproductive, aquatic, larval habitat, foci contain redundant information about y. 

Linear regression models are often fitted employing the least squares approach, but they may also be fitted in 

other ways, such as by minimizing the "lack of fit" in some other norm (as with least absolute deviations regression), or 

by minimizing a penalized version of the least squares loss function as in ridge regression (L
2
-norm penalty) and lasso 

(L
1
-norm penalty). L1 and L2 penalized estimation methods shrink the estimates of the regression ceffcients towards 

zero relative to the maximum likelihood estimates [2]. The purpose of this shrinkage in an oviposition, sub-meter 

resolution, eco-endmember, malaria, mosquito, grid-stratifiable, prognosticative, vulnerability, sub-meter resolution, 

geo-spectrotemporal, LULC signature, frequency model would be to prevent over fitting arising due to either 

collinearity of the eco-georefereneced covariates or high-dimensionality. Although both methods are shrinkage 

methods, the effects of L1 and L2 penalization would be quite different in an endmember, LULC, malaria, mosquito, 

oviposition, aquatic, larval, habitat model. Applying an L2 penalty would tend to result in small but non-zero, eco-

endmember, geo-spectrotemporal, capture point, regression coefficients, whereas applying an L1 penalty may tend to 

result in many regression LULC coeffcients shrunk exactly to zero and a few other residual variables (e.g., immature 

seasonal, unknown, hyperproductive, eco-endmember capture point, foci, frequency, density counts) with 

comparatively little shrinkage. Combining L1 and L2 penalties may render a result in between, with fewer regression 

coefficients set to zero than in a pure L1 setting, and more shrinkage of the other ento-ecoepidemiological, geosampled, 

endmember, geo-spectrotemporal, LULC coefficients.  

 

The fused lasso penalty, an extension of the lasso penalty, encourages sparsity of the coefficients and their 

differences by penalizing the L1-norm for both of them at the same time[4], thus producing sparse and piecewise 

constant stretches of non-zero endmember, sub-meter resolution, LULC coefficients in a forecast, capture point,ento-

ecoepidemiological, malaria, mosquito, vulnerability, aquatic, larval habitat model. A value of zero always means no 

shrinkage and hence the procedure would be similar to that of a maximum likelihood estimation) [4], whilst a mean 

value (e.g., aquatic, larval habitat, eco-georeferenced , hyperproductive, density count) would mean infinite shrinkage 

(i.e., setting all the geosampled malaria mosquito, endmember, LULC regression coefficients to zero). 
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Least absolute deviations (LAD), also known as least absolute errors (LAE), least absolute value (LAV), least 

absolute residual (LAR), sum of absolute deviations, or the L1 norm condition[2], is a statistical optimality criterion and 

the statistical optimization technique that relies on it. Least squares techniques may  parsimonioulsy locate a function 

such as a simple "trend line" in an endmember, oviposition, empirical,sub-meter resolution,LULC  dataset of two-

dimensional,  malaria, mosquito, aquatic, larval habitat, capture point, geosamped, Cartesian coordinates  which may 

closely approximate a set of (x,y),seasonal, grid-stratifiable,  hyperproductive, capture point, foci covariates. 

Conversely, the least squares approach may be employable to fit a geo-spectrotemporal, oviposition, malaria, mosquito, 

endmember, forecast, vulnerability, LULC model that is not linear. Thus, although the terms "least squares" and "linear 

model" are closely linked, they may not be synonymous in prognosticative, malaria, mosquito, oviposition, geo-

spectrotemporal, optiizable, eco-endmember, geoclassifiable, LULC, eco-georeferenceable paradigms for tareting 

seasonal, hyperproductive, unknown foci.  

An optimal, least square, oviposition, sub-meter resolution, endmember, LULC, eco-georeferenecable, 

malaria, mosquito, oviposition, predictive, risk model may reveal un-geosampled geolocations of eco-georeferenceable, 

seasonal, hypeproductive, aquatic, larval, habitat, capture point foci. Here "optimal" in the least-squares approach may 

be understood to be  a line that minimizes the sum of squared residuals of the geosampled, endmember, eco-

geographical, LULC data (e.g Euclidean distance between hyperproductive, aquatic, larval habitats), or geometrical 

mean, oviposition, non-eco-geographical, endmember, explantive regressors [e.g., solar-induced chlorophyll 

fluorescence as measured by Photosynthetically Active Radiation (PAR) absorbed by chlorophyll  at an intermittently 

canopied, seasonal, unknown, hyperproductive, malaria, mosquito, eco-georeferenecable foci].  

The method of least squares is also a standard approach in  regression analysis  to the approximate solution 

of overdetermined systems, (i.e., optimizable, sub-meter, resolution, geo-spectrotemporal,  oviposition, LULC datasets 

of vulnerability, vector arthropod, capture point, prognosticative, non-linear  equations in which there are more 

equations than unknowns). The most important application in quantitative, ento-ecoepidemiological, LULC, 

endmember, capture point, predictive, regression, endemic, risk modeling for optimizing targeting of seasonal, eco-

georeferenceable, hyperproductive, malaria, mosquito, aquatic, larval, habitat foci is in data fitting[1]. An 

overdetermined system in an endmember, seasonal, capture point, LULC model, endmember simulation may be 

inconsistent (it has no solution) when constructed with a random empirical dataset of geosampled, hyperproductive, 

capture point, malarial, mosquito, aquatic, larval habitat, geo-spectrotemporal, orthogonal, regression covariates.   

 

As mentioned, defining the best fit in the least-squares sense for a vulnerability, forecast-oriented, geo-

spectrotemporal, capture point, malaria, mosquito, LULC, endemic,aquatic, larval habitat  model for targeting 

unknown, seasonal, hyperproductive, endmember foci may require  minimizing the sum of squared residuals (an 

residual being: the difference between an observed, geosampled,  immature count, capture point, measured,regressable  

value, and the fitted value provided by the aquatic, larval, habitat, oviposition model). Unfortunately, when such models 

have substantial, inconspicuous, propagational uncertainties (heteroscedasticity) in the  independent variables, 

(the x variables), then simple regression and least-squares, vulnerability, eco-georeferenceable, LULC, endemic 

forecasts (e.g., endmember, grid-stratifiable,  targets of seasonal, geo-spectrotemporal, hyperproductive, unknown, 

capture point foci) may be misspecified; in such cases, the methodology required for fitting errors-in-variables 

models may be considered instead of that for least squares. 

In statistics, errors-in-variables models or measurement error models are regression models that account for 

measurement errors in the independent variables. In contrast, standard, forecast, vulnerability, ento-ecoepidemiological, 

grid-stratifiable, goclassifiable, optimizable, oviposition, malaria, mosquito, endmember,orthogonal, regression models 

for targeting  unknown, seasonal, eco-georeferenceable, hyperproductive, capture point, aquatic, larval, habitat foci will 

assume that frequency, wavelength, signature, sub-meter resolution, explanatory, LULC,endmember regressors have 

been measured exactly, or observed without error; as such, those models may account only for errors in the dependent 

variables. The linear structural model is an example of an errors in response variable model, or measurement error 

model that have wide practical use in vector arthropod, geostatistical   literature.  

The classical measurement error assumption maintains that the measurement errors in any of the variables in a 

signature, frequency, wavelength dataset are independent of all the true variables that are the objects of interest [2]. The 
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only consequence of the presence of geosampled measurement errors in the dependent variables in an oviposition, 

forecast, vulnerability, geo-spectrotemporal, malaria, mosquito, capture point, endmember, ento-ecoepidemiological, 

sub-meter resolution, LULC model is that they would inflate the standard errors of the regressed coefficient estimates. 

On the other hand, independent errors that are present in an empirical, oviposition, ento-ecoepidemiological dataset of 

geosampled, eco-georeferenceable, aquatic, larval habitat, capture point, LULC observations of the regressand xi = x ∗ i 

+ ηi may lead to attenuation bias in a simple univariate, regression, vulnerability, endemic, malaria, mosquito, capture 

point model and to any inconsistent unknown foci, coefficient estimates forecasted. Regression dilution, (or attenuation 

bias) also known as regression attenuation, is the biasing of the regression slope towards zero (or the underestimation of 

its absolute value), caused by errors in the independent variable [2]. 

In the measurement error Cox proportional hazards model, the naive maximum partial likelihood estimator 

(MPLE) is asymptotically biased [2]. A malariologist, medical entomologist or other experimenter may provide the 

formula of the asymptotic bias for constructing an additive measurement, error-less, Cox, forecast, vulnerability 

malaria, mosquito, model when regressively delineating uncertainty-oriented, eco-georeferenecable, geoclassifiable, 

aquatic, larval habitat, sub-meter resolution, oviposition, LULC model misspecified, grid-stratifiable, unknown, 

endmember estimators. By adjusting for such error, a malariologist or medical entomologist may derive an adjusted 

MPLE that is less biased. The bias can be further reduced by adjusting for the estimator second and even third time. An 

oviposition, sub-meter resolution, LULC, aquatic, larval habitat, endmember, capture point, oviposition estimator my 

have the advantage of being easy to apply when regressing orthogonal covariates associated to a dependent variable 

(e.g., geosampled, orthogonally decomposeable, eco-georeferenecable, seasonal, unknown hyperproductive, capture 

point, foci eigenvectors). The performance of the proposed orthogonal, endmember, LULC, spatial filter, synthetic 

estimators may be then evaluated through an ento-ecoepidemiological, time series, simulation study.  

Proportional hazards models are a class of survival models in statistics. Survival models relate the time that 

passes before some event occurs to one or more covariates that may be associated with that quantity of time. In a 

proportional hazards model, the unique effect of a unit increase in a covariate is multiplicative with respect to 

the hazard rate [2]. There is a relationship between proportional hazards models and Poisson, probability, models which 

may fit approximate proportional hazards models  constructed from eco-georeferenceable, seasonal, malaria, mosquito, 

oviposition, aquatic, larval habitat, capture point, regressed vulnerability, semi-parameterizable, geo-spectrotemporal,  

endemic, sub-meter resolution,  endmember, LULC,  orthogonal estimators. 

Two explanatorial regression lines may occur when quantitating the range of linear regression possibilities in a 

prognosticative, ento-ecoepidemiological, malaria, mosquito, vulnerability, orthogonal, LULC, signature model 

employed for targeting seasonal, unknown, eco-georeferenceable, hyperproductive, capture point, endmember foci. The 

shallow slope in an uncoalesced empirical dataset of capture point, oviposition, grid-stratifiable, frequency, wavelength, 

sub-meter resolution, geosampled LULC, covariates may be then obtainable when the independent variable (or 

predictor) is on the abscissa (x-axis). The steeper slope is detectable when the independent variable is on the ordinate 

(y-axis) [3]. By convention, the more, explicative, an ento-ecoepidemiological, eco-georeferenceable, orthogonal, 

LULC dataset of aquatic, larval habitat, oviposition, endmember, signature, independent variables on the x-axis are, the 

shallower slope obtainable. Reference lines are averages within arbitary bins along each axis [2]. Note that the steeper 

regression estimates in an orthogonal, seasonal, forecast, malaria, mosquito, sub-meter resolution, eco-

georeferenceable, geo-spectrotemporal, vulnerability, LULC model would be, the   more consistent the regression 

quantitation of the diagnostic, observational, endmember, oviposition, ento-

ecoepidemiological,geoclassifiable,optimizable,regressable, orthogonal,  residuals (grid-stratifiable,seasonal, eco-

georferenecable, unknown, hyperproductive, oviposition-related,  foci geolocations) with smaller errors in the y-axis 

variable rendered.  

In the case when some oviposition, eco-georeferenceable, hyperproductive, seasonal, aquatic, larval habitat, 

grid-stratfiable, non-ecographical, LULC,signature, frequeny, wavelength regressors have been measured with errors, 

estimation based on the standard assumption could lead to inconsistent, correlation, time series, endmember, coefficient 

estimates. For example, semi-parameterizable, LULC, geo-spectrotemporal, covariate estimates in a probabilistic, 

endmember, malaria, mosquito, sub-meter resolution, grid-stratifiable, capture point, oviposition model may not tend to 

the true, geosampled, larval, density, count values even in very large, ento-ecoepidemiological, regressable, geo-

spectrotemporal, parameterizable or semi-paramterizable  datasets. In non-linear, time series, dependent, sub-meter 
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resolution, prognosticative, vulnerability, endmember, eigenfunction, orthogonal, eigenfunction, orthogonal, 

decomposable, LULC models, the direction of the bias is likely to be very complicated. A malariologist or medical 

entomologist may consider fitting a straight line when quantitating the relationship of an outcome explanatory, LULC, 

eco-endmember, aquatic, larval habitat, seasonal,  hyperproductive, geosampled variable y  (e.g.,  levels of  

discontinuous canopy foliar traits geosampled   at a capture point) to an eco-georeferenceable, sub-meter resolution, 

grid-stratifiable,optimizable, regressable, oviposition, parameterizable explanator x (immature density count) for 

estimating the slope of the line in a geomorphological, malaria, forecast, vulnerability, orthogonal, model output. 

Statistical variability, measurement error or random noise in the y variable may cause uncertainty in the estimated 

slope, but not bias: on average, the procedure could calculate the right slope of the model. However LULC, capture 

point, endmember signature, reflectance variability, geometrical measurement error or random noise in an non-

optimizable  geosampled, aquatic, larval habitat,  explanatorial covariate in the model may cause bias in the estimated 

slope as well as imprecision in forecasts of seasonal, hyperproductive foci. The greater the variance in the x 

measurement in the oviposition, prognosticative, ento-ecoepidemiological, endmember, LULC, risk model the closer 

the estimated slope will approach zero instead of the true value [1].It may seem counter-intuitive that noise in an eco-

georeferenecable, geosampled, aquatic, larval, habitat, geo-spectrotemporal, orthogonal or geomteric mean regression 

oviposition, LULC explanator x induces a bias, but noise in an outcome variable y will not. Linear regression is not 

symmetric: the line of best fit for predicting y from x (the usual linear regression) is not the same as the line of best fit 

for regressively optimally quantitating x from an ento-ecoepidemiological, geo-spectrotemporal,  LULC dataset of 

uncoalesced, eco-georeferenceable, geoclassifiable, sub-meter resolution, capture point, orthogonal, grid-stratifiable, 

malaria, mosquito, signature, eco-endmember covariates. 

In certain circumstances propagational uncertainties in an eco-georeferenceable, ento-ecoepidemiological, 

capture point, forecast, vulnerability, probabilistic, oviposition, geosampled, endmember, LULC paradigm may be 

corrected, but in order to do so, some knowledge of the nature and size of the both x and y errors must be known in the 

endmember model output. Typically this is not the case in predictive, orthogonal, oviposition, malaria, mosquito, 

endmember, LULC, risk mapping. Unfortunately, malariologists and other researchers (medical entomologists, vector 

ecologists) are often not cognoscente whether an eco-georeferenceable, aquatic, larval habitat, grid-stratifiable, x 

empirical, seasonal, geosampled, hyperproductive, geoclassified, discontinuous,  LULC explanator is a ‘controlled 

optimizable variable’ with negligible error. Fortunately several techniques have been recently developed to estimate the 

error in the slope of these ento-ecoepidemiological, aquatic, larval, habitat, vulnerability, eco-endmember, foci models. 

A controlled orthogonal, malaria, mosquito, oviposition, eco-georeferenceable, optimally regressable, 

geosampled, geo-spectrotemporal, capture point, explanatory, LULC variable can usually be attained in a controlled 

experiment, or when studying a time series of regressable, eco-georeferncable, capture point, seasonal, uncoalesced, 

sub-meter resolution, grid-stratifiable, hyperproductive,endmember  foci provided that the date and time of capture 

point observations have been recorded and documented in a precise and consistent manner. Unfortunately this is 

typically not the case  especially when multiple, capture point, grid-stratifiable, LULC, geoclassified, oviposition,  ento-

ecogeographical, endmember, data observations  are retrieved from different eco-georeferenecable,  seasonal, 

orthogonally, eigendecomposable  reference, endmember, signature datasets. 

One way to demonstrate the slope problem in an ento-ecoepidemiological,eco-georeferenecable, grid-

stratfiied, oviposition, forecast, vulnerability, malaria, mosquito, sub-meter resolution, endmember,   LULC model is to 

invert the x and y axes and repeat the ordinary least squre (OLS) fit. If the results are valid, irrespective of orientation, 

the first slope in the - endmember, LULC model output would be the reciprocal of second one. However, this is only 

the case when there is very small errors in the capture point, endmember variables or when the geosampled, aquatic, 

larval, habitat data is highly correlated (i.e., grouped closely around a straight line). In the case of one controlled, 

explicative, diagnostic, orthogonal, LULC, capture point, aquatic, larval habitat, hyperproductive, geosampled, eco-

endmember variable and one error-prone, dependent variable in an exploratory, grid-stratifiable, sub-meter resolution, 

signature, probabilistic paradigm, the inverted result would be incorrect. In the case scenario of two regressable, 

seasonal, hyperproductive, capture point,  aquatic, larval habitat, geomorphological, frequeny, LULC, parameterizable 

or semi-paramterizable, eco-georeferenceable, foci, estimator datasets containing multiple, geosampled,  oviposition–

related, observational error-prone, sub-meter reoslution, grid-stratified  covariates, both results will be wrong and the 

correct result will generally lie somewhere in between.  
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Another way to check the result in an oviposition,orthogonal, tim series, dependent, LULC, ento-

ecoepidemiological,  sub-meter resolution, grid-stratifiable, endmember, empirical dataset of eco-georeferenceable, 

malaria, mosquito, capture point, vulnerability, model forecasts (e.g., hyperproductive, seasonal, aquatic, larval habitat 

geolocations), is by examining the cross-correlation between the residual and the independent variable (i.e.,  model – y 

vs x) then repeating it with incrementally larger frequency, explanatorial, discrete, immature, frequency, wavelength, 

density, count values of the fitted ratio. Depending on the nature of the endmember, signature, capture point, geo-

spectrotemporal, orthogonal, LULC, frequency, signature data, it may be obvious that the Ordinary Least Square  

(OLS) result does not produce the minimum residual between the ordinate and the non-explicative regressor, (i.e. it 

does not optimally account for co-variability of the two geosampled, aquatic, larval, habitat quantities in the 

vulnerability model). 

In the latter situation, the two regression fits can be taken as bounding the likely true value in the ento-

ecoepidemiological, forecast, vulnerability, malaria, mosquito, LULC endmember, geo-spectrotemporal model when 

optimally targeting seasonal, eco-georeferenceable, hyperproductive, aquatic, larval, habitat foci, but some knowledge 

of the relative errors is needed to decide where in that range would be the finest estimation of a seasonal,  sub-meter 

resolution, eco-endmember, empirical, LULC,   capture point, signature, time series. There are a number of techniques 

such as bisecting the angle, taking the geometric mean (e.g., square root of the capture point, eco-georeferenceable, 

hyperproductive, aquatic, larval, habitat, geosampled density, count values), or some other average, but ultimately, they 

are no more objectives unless driven by some knowledge of the relative errors in such probabilistic, geo-

spectrotemporal, endmember, LULC paradigms. Clearly bisection would not be correct if one geosampled, 

hyperproductive, seasonal, malaria, mosquito, endmember,  oviposition, capture point, prognosticative,  grid-

stratifiable, LULC, explanatory variable has low error, since the true slope would then be close to the OLS fit 

conducted  with that quantity on the x-axis. 

Least-square problems fall into two categories: linear OLS and non-linear least squares, depending on whether 

or not the residuals are linear in all unknown. The linear least-squares problem occurs often in statistical, predictive, 

regression, endmember, orthogonal, ento-ecoepidemiological, forecast, vulnerability modelling of eco-

georeferenceable, remotely sensed, malaria, mosquito, capture point, oviposition, seasonally hyperproductive,  aquatic, 

larval habitat geo-spectrotemporal, geosampled, explicative, LULC variables; it has a closed-form solution. In 

mathematics, a closed-form expression is a mathematical expression that can be evaluated in a finite number of 

operations [2]. It may contain constants, and variable functions (e.g., nth root, exponent, logarithm, trigonometric 

functions, and inverse hyperbolic functions), but usually no limit. The nonlinear problem is usually solved by iterative 

refinement; at each iteration the system is approximated by a linear vulnerability, capture point, endmember, LULC 

estimator [see 1]. 

   Polynomial least squares  can describe the variance in the prediction of a  dependent explanatorial, endmember 

variable such as total, seasonal, aquatic, larval habitat, capture point, LULC density counts  as a function of an 

independent variable and the deviations from the fitted curve within any sub-meter resolution, grid-stratifiable, 

oviposition, malaria, mosquito, geo-spectrotemporal, vulnerability, regression model for targeting seasonal, un-

geosampled, LULC, hypeprproductive, endemic  foci. When eco-georeferenceable, capture point,  geo-spectrotemporal, 

eco-endmember, aquatic, larval habitat, geosampled, unmixed, LULC, signature  observations (e.g., non-continuous, 

infrequently canopied, malaria mosquito, capture point, sub-meter resolution, regression covariates) come from 

an exponential family, mild conditions are satisfiable and  least-squares estimates and  maximum-likelihood estimates 

are identical[1].    

The method of least squares may also be optimally constructed as a method of moments in any forecast, 

vulnerability, geo-spectrotemporal, malaria, mosquito, aquatic, larval habitat,eco- endmember, oviposition, capture 

point, vulnerability, LULC  model. In statistics, the method of moments is a method of estimation of population 

parameters [2].In order to qualitatively regressively quantitate a method of moments in an endmember, probabilistic, 

sub-meter resolution, grid-stratifiable,  geo-spectrotemporal, forecast, vulnerability,  ento-ecoepidemiological, eco-

georeferenceable, vector arthropod, signture model, a malariologist or medical entomologist may have to start by 

deriving equations that relate the population moments (i.e., the expected values of powers of the geosampled, random, 

oviposition-oriented, geoclassified, LULC variable under consideration) to the capture point, signature, geo-

spectrotemporal, parameterizable, endmember estimators of interest ( e.g. aquatic, larval,  habitat denisty count of a 

seasonal, hyperproductive, aquatic foci). The use of least squares is valid and practical for more general families of 
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functions [2]. Initially, an endmember, sub-meter resolution, malaria, mosquito, oviposition, aquatic, larval, habitat 

sample may be drawn and the population moments may be seasonally estimated from the sample. The regression 

equations may then then solve for the, eco-georeferenceable, capture point, parameterizable, eco-endmember, 

geoclassifiable, LULC, explanative, foci estimators of interest, employing the sample moments in place of the unknown 

population moments. In so doing, regression coefficient estimates of those ento-ecoepidemiological, geosampled, 

capture point, endmember, LULC prognosicators may be optimally orthogonally derivable whch may reveal other 

unknown, hyperproductive, eco-georeferenceable, malaria, mosquito, aquatic, larval habitat, foci, endemic 

geolocations. Also, by iteratively applying local  quadratic approximation to the likelihood through Fisher information, 

the least-squares method may be robustly employable to fit a generalized, endemic,  linear, oviposition, endmember,  

geoclassifiable, LULC, sub-meter resolution, malaria, mosquito,  grid-stratifiable, forecast, vulnerability, signature 

model.  

A Fisher scoring is a known methods for maximum likelihood computation [3]. A generalization for the method 

may be employable to determine geolocations of seasonal, geosampled, eco-georeferenecable, capture point, 

hyperproductive foci of malaria, mosquito, aquatic, larval habitat in a unified manner so that they can be used for 

maximum likelihood computation, when, for example, there exist constraints on the geosampled prognosticative, 

frequency, wavelength, signature, endmember, LULC, regression, vulnerability parameters. A generalized method may 

employ corresponding quadratic functions to validate the ento-ecoepidemiological regression forecasts. The model 

could proceed by repeatedly approximating the log-likelihood function with the quadratic functions in the geosampled, 

capture point, endmember neighborhoods (e.g., agro-village African, LULC pastureland foci) of the current iterates and 

optimize each quadratic function within the parameter space. It may be shown that each quadratic function has a 

weighted linear regression formulation, which can be conveniently solved in an LULC, sub-meter resolution, grid-

stratifiable, malaria, mosquito, oviposition, forecast, vulnerability, aquatic, larval habitat, capture point model. This 

generalization may also extend the applicability of the Fisher scoring method for targeting eco-georeferenceable, 

seasonal, hyperproductive, aquatic, larval, habitat malaria, mosquito, capture point, ento-ecoepidmeiological foci when 

the expected Fisher information matrices may be unavailable in closed form. While the generalized method may suffer 

from large residual problems and the generalized Fisher scoring method may perform inconsistently in numerical 

experiments. 

According to Jacob et al. [1]  letting {Pθ}θ∈Θ denote a parametric family of distributions in an exploratory, ento-

ecoepidemiological, LULC, eco-georeferenceable, forecast, vulnerability, malaria, mosquito, oviposition, capture point, 

eco-endmember  paradigm, in a probability space X, where θ ∈ Θ ⊂ R ( i.e., an uncoalesced dataset of frequency,  

orthogonal, aquatic, larval habitat, wavelength, sub-meter resolution, signature  explanators) can  index the distribution 

while denoting bias introduced by random measurement error.  Random measurement error in an exposure variable can 

bias the estimates of regression slope coefficients towards the null [2]. Random measurement error in an outcome 

oviposition, eco-endmember, LULC variable will instead increase the standard error of the estimates and widen the 

corresponding confidence intervals, making results less likely to be statistically significant. Increasing the ento-

ecoepidemiological, malaria mosquito, sample size may help minimize the impact of measurement error in an outcome, 

aquatic, larval habitat, oviposition, explanatory, geo-spectrotemporal, capture point, geosampled, LULC, 

prognosticative variable. 

 A malariologist, medical entomologist or other researcher may assume (with no real loss of generality) that each 

Pθ in an ento-ecoepidemiological, geo-spectrotemporal, LULC, forecast, vulnerability, eco-georeferenceable, time 

series, malaria, mosquito, endmember, oviposition model has a density given by pθ. Then the Fisher information 

associated with the model could be the matrix given by Iθ := Eθ h ∇θ log pθ(X)∇ log pθ(X) ⊤i = Eθ[ ˙ℓθ ˙ℓ ⊤θ ],  where 

the score function ℓθ = ∇θ log pθ(x) would be  the gradient of the log-likelihood at θ (implicitly depending on X) and 

the expectation Eθ would denote expectation taken with respect to Pθ in the model outcome. Intuitively, the Fisher 

information will capture the variability of the gradient ∇ log pθ in a family of capture point, hyperproductive, aquatic, 

larval habitat habitat, computated, sub-meter resolution, frequency, wavelength, signature, seasonal distributions for 

which the score function ℓθ may have high, geo-spectrotemporal, endmember, geoclassifiable, LULC, irradiance 

variability. Expecting a non-biased, capture point,  endmember, LULC  regression estimation from  an  eco-

georeferenecable, geosampled,  hyperproductive, aquatic, larval habitat, orthogonal, geo-spectrotemporal,  capture 

point, foci parameter θ  would be naïve, however different θ changes in  the behavior of ℓθ may be quantitated though 

the log-likelihood functional θ → Eθ0 [log pθ(X)]which may  vary more in θ in erroneous, endmember, oviposition, 

capture point, foci frequency, wavelength models with non-robust, LULC signature properties.  
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For optimally regressively estimatng geosampled,  ento-ecoepidemiological, LULC, model functions  in  an 

empirical, oviposition datset of eco-georeferenceable,  malaria, mosquito,sub-meter resolution,  capture point, geo-

spectrotemporal, grid-stratifiable,  endemic, risk model for  optimally  prognosticatively targeting, seasonal, 

hypeproductive, grid-stratifiable,  malria, mosquito, aquatic, larval, habitat, endmember foci, a sum of geosampled, 

immature, count data and an objective function based on squared Euclidean distances (i.e., a  least squares function 

approximation) may be employed. For time series comparisons, it has often been observed that z-score normalized 

Euclidean distances far outperform the unnormalized variant in ento-ecoepidemiological, forecast, vulnerability, 

endember, geo-spectrotemporal, vector arthropod, geoclassifiable, sub-meter resolution, optimizable  models [5,6]. 

Hence a seasonal, hypeproductive foci may show that a z-score normalized, squared Euclidean Distance (e.g., 

measurements between eco-georeferenceable capture points) is, in fact, equal to a distance based on Pearson 

Correlation. This would have profound impact on many distance-based classification or clustering methods in any 

aquatic, larval habitat, malaria, mosquito, sub-meter resolution, oviposition, grid-stratifiable, capture point, eco-

endmember, LULC model. It may be shown that the often used k-Means algorithm formally needs a modification to 

keep the interpretation as Pearson correlation strictly valid for defining seasonal, eco-georeferenceable, 

hyperproductive, malaria, mosquito, LULC, endmember foci. Experimental results may demonstrate that in many cases 

the standard k Means algorithm generally produces the same results. The summand may be: (yi−α−βxi)
2
 which may be 

same as in the expression of P(α,β) in an LULC, endemic,  model output.     

  In mathematics,  computer science and operations research, mathematical optimization or mathematical 

programming, is the selection of a best element (with regard to some criterion) from some set of available 

alternatives[4]. In the simplest case, an optimization in a regression equation for geo-spectrotemporally targeting, 

hyperproductive, oviposition,  eco-georefereneceable, malaria, mosquito, aquatic, larval habitat, endemic foci  consists 

of maximizing or minimizing a real function  by optimizing, and precisely systematically choosing model 

input geosampled capture point values from within an allowed set and computing the value of the function. More 

generally, optimization includes finding "best available" values of some objective function given a defined domain (or 

input), including a variety of different types of objective functions and different types of domains.  

Typically, an empirical oviposition,LULC dataset A of ento-ecoepidemiological, vector arthropod, aquatic, 

larval habitat geosampled, sub-meter resolution, signature, grid-stratifiable, eco-endmember, LULC,oviposition, 

signature prognosticators will have some subset of the Euclidean space R
n
, often specified by a set of constraints, 

equalities or inequalities that the members of A have to satisfy. The domain A of f would then be based on the search 

space or the choice set, while the elements of A would be called candidate solutions or feasible solutions in the 

endmember, forecast, vulnerability, LULC model. The function f is called, an objective function, a loss function or cost 

function (minimization), a utility function or fitness function (maximization) [4]. A feasible solution that minimizes (or 

maximizes, if that is the goal) A would be the objective function may be an optimal solution (e.g., field-verified, 

predicted, seasonal, hyperproductive, LULC, endmember foci) derivied from a sub-meter resolution, ovipsoition, 

malaria mosquito, endmember, probabilistic, signature paradigm). Conventional optimization problems are usually 

stated in terms of minimization. Generally, unless both the objective function and the feasible region are convex in a 

minimization problem, there may be several local minima for A. A local minimum x*  for an oviposition, LULC, sub-

meter resolution, grid-stratifiable, endemic, forecast, vulnerability,optimizable, endmember, model  defined as a 

hyperproductive capture point for which there exists some δ > 0 such that for all x all of the function values are greater 

than or equal to geosampled, endmember value at that point. Local maxima in the ento-ecoepidemiological LULC, 

malaria, mosquito, aquatic, larval habitat, vulnerability model would be then geo-spectrotemporally defined similarly. 

While a local minimum is at least as good as any nearby points, a global minimum is at least as good as every 

feasible point [7]. A global minimum, also known as an absolute minimum, is the smallest overall value of a set, 

function, etc., over its entire range [4]. Global minimum, also known as an absolute minimum, is the smallest overall 

value of a set, function, etc., over its entire range. It may be impossible to construct an algorithm that will find a global 

minimum for an arbitrary function.  In a convex problem in an ento-ecoepidemiological,  LULC, endmember malaria, 

mosquito model for targeting seasonal, hyperproductive,aquatic, larval habitat  foci, if there is a local minimum that is 

interior (not on the edge of the set of feasible capture points), it may then also be the global minimum in the 

vulnerability model. However, a nonconvex problem in an endmember, oviposition endemic, geo-spectrotemporal, 

endmember, LULC, malaria mosquito, forecast, vulnerability model may have more than one local minimum all of 

which need not be global minima. A large number of algorithms proposed for solving nonconvex problems—including 

the majority of commercially available solvers—are not capable of making a distinction between locally optimal 

solutions and globally optimal solutions, and will treat the former as actual solutions to the original problem [4]. Global 

https://en.wikipedia.org/wiki/Least_squares_(function_approximation)
https://en.wikipedia.org/wiki/Least_squares_(function_approximation)
https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Operations_research
https://en.wikipedia.org/wiki/Optimization_problem
https://en.wikipedia.org/wiki/Optimization_problem
https://en.wikipedia.org/wiki/Maxima_and_minima
https://en.wikipedia.org/wiki/Function_of_a_real_variable
https://en.wikipedia.org/wiki/Argument_of_a_function
https://en.wikipedia.org/wiki/Value_(mathematics)
https://en.wikipedia.org/wiki/Domain_of_a_function
https://en.wikipedia.org/wiki/Subset
https://en.wikipedia.org/wiki/Euclidean_space
https://en.wikipedia.org/wiki/Constraint_(mathematics)
https://en.wikipedia.org/wiki/Domain_(mathematics)
https://en.wikipedia.org/wiki/Candidate_solution
https://en.wikipedia.org/wiki/Loss_function
https://en.wikipedia.org/wiki/Feasible_region
https://en.wikipedia.org/wiki/Convex_function
https://en.wikipedia.org/wiki/Global_minimum
https://en.wikipedia.org/wiki/Convex_optimization
https://en.wikipedia.org/wiki/Global_optimization


International Research Journal of Computer Science and Application                       

Vol. 2, No. 1, March 2018, pp. 1-181                                                                         

  Available Online at http://acascipub.com/Journals.php 
 

 

 

40 

Copyright © acascipub.com, all rights reserved 

optimization is the branch of mathematics and numerical analysis that is concerned with the development of 

deterministic algorithms that are capable of guaranteeing convergence in finite time to the actual optimal solution of a 

nonconvex problem[7]. 

The generator argmin does, as applied to a function, may pick out oviposition, hyperproductive, foci, 

endmember, geo-spectrotemporal, forecast, vulnerability, grid-stratifiable,   LULC, model estimator in the function's 

domain at which the function takes its minimum value (assuming that the seasonal, eco-georeferenceable,capture point 

is unique based on geosampled larval density count).Argminw,bmaxα≥0f(w,b,α)arg⁡minw,bmaxα≥0f(w,b,α)[4].In so 

doing  a value of (w,b)(w,b) may minimize maxα≥0f(w,b,α)maxα≥0f(w,b) for optimally targeting eco-

georeferenceable, malaria, mosquito, aquatic, larval habitat, geosampled foci. The maxα≥0f(w,b,α)maxα≥0f(w,b,α) may 

be  the maximum value the function achievable in an endmember, sub-meter resolution, LULC, prognosticative model 

subject to the constraint alpha greater than or equal to 0   but a malariologist or medical entomologist  should be clear 

that this response would depend on the variable vector (w,b)(w,b): given any (w,b),(w,b); it could equal f(w,b,α0)for 

some (maximizing) α0⩾0α; that is, f(w,b,α0)⩾f(w,b,α)) for all α⩾0α⩾0 whenst targeting prolific habitats. In the 

paradigm α0 may depend on (w,b). 

 Hence quantitating argmin α and β, from an uncoalesced, sub-meter resolution, endmember, empirical  

datatset of geosampled, oviposition, capture point, frequency, aquatic, larval habitat,  signature values of the objective 

function in a malaria mosquito model may optimally define ecogeoreferenceable orthogonal, oviposition, geo-

spectrotemporal, LULC geolocations of unknown, prolific, seasonal foci. In such as ecogeographic, linear regression 

the L∞ norm or, equivalently, the Chebyshev approximation criterion, rather than the usual L2 norm may be optimally 

employable to minimize the sum of squared, vulnerability, endmember, ento-ecoepidemiological, grid-stratifiable, 

LULC residuals in an oviposition, signature, forecast, vulnerability model.  

The Chebyshev criterion states: Let p(x) be a monic polynomial of degree n[4]. Hence the smallest least upper 

bound for p(x) in the interval [-1,+1] would be 1/2^(n-1 in a malaria, mosquito model for targeting seasonal, 

hyperproductive, capture point foci. The problem in an oviposition, sub-meter resolution, malaria, mosquito, aquatic, 

larval habitat, grid-stratifiable, LULC, forecast vulnerability for targeting seasonal, eco-georeferenceable, 

hyperproductive, aquatic, larval habitats is to minimize the maximum absolute value of the "criterion function" of the 

error[5]. By imposing a rather natural restriction on the criterion function, the problem may be solved completely; in 

these prognosticative endmember models where the existence of the uniqueness and the characterization of the best 

approximation may be optimally clarified and interesting relationships between the best approximations corresponding 

to different endmember, geospectrotemporal, LULC criterion functions may be quanatitated. 

 

The Chebyshev theorem and the de la Vallée-Poussin theorem (see Appendix 1) remain valid for Chebyshev 

systems; all methods developed for the approximate construction of algebraic polynomials of best uniform 

approximation apply equally well as well  based on the uniqueness theorem. The de la Vallée-Poussin alternation 

theorem: If a sequence of points , , in a closed set  forms an alternation, then for the best 

approximation of a function  by multivariate, geo-spectrotemporal, LULC polynomials of the 

form the estimate  is valid, 

where  is a Chebyshev system. According to the Chebyshev theorem, equality holds if and only if  is 

the polynomial of best approximation. Analogues ofi this theorem  exist for arbitrary Banach spaces [2]. The theorem is 

employed in numerical methods for constructing polynomials of best approximation. If a function f(x) is 

parsimoniously, robustly, geo-spectrotemporally   continuous on [a,b] and 

ifA=maxa≤x≤b|f(x)−Pn(x)|,A=maxa≤x≤b|f(x)−Pn(x)|,Pn(x)=∑k=0nakxk,Pn(x)=∑k=0nakxk,then Pn(x)Pn(x) is the 

polynomial of best uniform approximation for f(x), i.e. 

maxa≤x≤b|f(x)−Pn(x)|=min{ck}maxa≤x≤b∣∣∣f(x)−∑k=0nckxk∣∣∣,maxa≤x≤b|f(x)−Pn(x)|=min{ck}maxa≤x≤b|f(x)−∑k=0

nckxk|,if and only if there exist n+2n+2  points a≤x0<⋯<xn+1≤ba≤x0<⋯<xn+1≤b in Chebyshev alternation, which 

means that the conditionf(xi)−Pn(xi)=ϵA(−1)i,i=0,…,n+1,f(xi)−Pn(xi)=ϵA(−1)i,i=0,…,n+1,is satisfied, 

where ϵ=1ϵ=1 or −1−1. This theorem was proved by P.L. Chebyshev in 1854 in a more general form, namely for the 

best uniform approximation of functions by rational functions with fixed degrees of the numerator and denominator. 

Chebyshev's theorem remains valid if instead of algebraic polynomials one considers polynomials 

Pn(x)=∑k=0nckϕk(x),Pn(x)=∑k=0nckϕk(x), 
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where {ϕk(x)}nk=0{ϕk(x)}k=0n is a Chebyshev system. The criterion formulated in Chebyshev's theorem leads to 

methods for the approximate construction of polynomials of best uniform (Chebyshev) approximation. In a somewhat 

different formulation Chebyshev's theorem can be extended to functions of a complex variable (cf. [2]) and to abstract 

functions (cf. [3]). 

A theorem stating the uniqueness of a mathematical, eco-georeferenceable, geosampled, geo-spectrotemporal, 

geoclassified, LULC, geospatial object (e.g. seasonal, hyperproductive, malaria mosquito, aquatic, larval habitat,) may 

mean that there is only one object (   capture point foci)fulfilling the given properties, or that all objects of a given class 

are equivalent (i.e., they can be represented by the same ento-ecoepidemiological forecast model). This may be 

expressed by stating that the seasonal, geosampled, prolific, aquatic, larval habitat foci is uniquely quantifiable by a 

certain set of wavelength, sub-meter resolution, capture point, grid-stratifiable, uncoalesced, LULC empirical, 

oviposition, endmember, frequency covariates. The object of many uniqueness theorems is the solution to a problem or 

an equation (e.g., prognosticative, geo-spectrotemporal, autocorrelation, frequency, signature, sub-meter resolution, 

imaged, capture point, LULC, signature, endmember, noise optimizer); in such cases, a uniqueness theorem is normally 

combined with an existence theorem.  

The existence theorem is a theorem stating the existence of an object, (e.g., seasonal, hyperproductive, malaria, 

mosquito, aquatic, larval habitat, LULC, capture point, foci) which may help generate a solution to a problem or 

equation. Strictly speaking, it need not tell how many such objects there are, nor give hints on how to find them. Some 

existence theorems render explicit formulas for solutions [e.g., Cramer's rule (see Appendix 2)], while others describe 

in their proofs iteration processes for approaching them [e.g., Bolzano-Weierstrass theorem]. Other existence theorems 

are settled by nonconstructive proofs which simply deduce the necessity of solutions without indicating any method for 

quantitating them (e.g., the Brouwer fixed point theorem, which is proved by reductio ad absurdum, showing that 

nonexistence would lead to a contradiction).  

Bolzano-Weierstrass theorem states that for , an infinite subset of a closed bounded set  has 

an accumulation point in [4]. For example, given a bounded sequence , in an optimizable, regressive, ento-

ecoepidemiological, oviposition, eco-georeferenceable, forecast, vulnerability, eco-endmember, malaria, mosquito grid-

stratified, signature, LULC model  with  for all , it must have a monotonic subsequence . A time 

series, optimizable  subsequence  must converge as it is monotonic and bounded[2]. Because  would be closed, the 

oviposition LULC, sub-meter resolution, eco-endmember,  model would contain the limit of . The Bolzano-

Weierstrass theorem is closely related to the Heine-Borel theorem and Cantor's intersection theorem, each of which can 

be easily derived from either of the other two[6].  

The Heine-Borel theorem states that a subspace of  R
n
 (with the usual topology) is compact  if it 

is closed and bounded [4]. Given a decreasing sequence of bounded nonempty closed sets   with real 

numbers (e.g., empirical dataset of endmember, geosampled, eco-georeferenceable, ento-ecoepidemiological, capture 

point, seasonal, hyperproductive, larval density counts) then Cantor's intersection theorem states that there must exist a 

optimizable regressable point  in their intersection,  for all .For example,  may be true in 

higher dimensions of Euclidean space in an orthnormal, forecast, vulnerability, signature, weighted endmember, LULC, 

oviposition model. Note that the hypotheses stated above may be crucial for normalization of diagnostic, eco-

georeferenecable, geoclassifiable, endmember, sub-meter resolution, geo-spectrotemporal, grid-stratifiable, endemic, 

oviposition, model output as it could reveal seasonal, eco-georeferenceable, hyperproductive, aquatic, larval habitat, 

LULC foci. The infinite intersection of open intervals may be empty, for example ,  may be usable to 

optimally quantitate geolocations of eco-georeferenceable, LULC, seasonal, unknown, hyperproductive, 

endmember,capture point foci Also, the infinite intersection of unbounded closed sets in the vector arthropod, 

geospectrotemporal, malaria, mosquito, prognosticative, grid-stratfiiable, risk model may be empty, (e.g., ). 

Alternatively, Brouwer's fixed-point theorem states if  is a continuous function  for 

all , then  has a fixed point in [2]. This can be proven in an ento-ecoepidemiological,  prognosticative, 

LULC, sub-meter resolution, malaria, mosquito, LULC, oviposition model  by supposing 
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that  Since  is continuous, the intermediate value theorem guarantees 

that there would exist a  such that  in the endmember model. Furthermore,  there must exist 

  such that in the endmember model output (e.g., eco-georeferenceable,  residual targets of seasonal, 

hyperproductive, LULC foci)  so there must exist a fixed capture point .If  is continuous on a closed 

interval , and  is any orthonormalized, discrete, integer,  larval, density, count  foci, measured  value 

between  and  inclusive, then there would be at least one eco-georeferenceable, hyperproductive, seasonal, 

aquatic, habitat, density count value  in the closed interval such that .The theorem may be proven by 

observing that  is connected because the capture point, eco-georeferenced, image of a connected set under 

a continuous function  may be connected, when  denotes the image of the interval  under the function  

in the frequency, wavelength, signature, ento-ecoepidemiological, geo-spectrotemporal, diagnostic, LULC model 

output. Since  is between  and , it must have estimators in the capture point, endmember paradigm. While 

Bolzano's used techniques which were considered especially rigorous for his time, they are regarded as nonrigorous in 

modern times [see 4]. 

Optimally regressively quantitating malaria, mosquito, ento-ecoepidemiological, forecast, sub-meter 

resolution, oviposition, grid-stratifiable, orthogonal, LULC, capture point, seasonal, hyperproductive, aquatic, larval 

habitat polynomials of best uniform employing the Chebyshev expansion, may  explicitly determine the best uniform 

polynomial approximation employing the space of polynomials for optimally validating an eco-georeferenceable, 

vulnerability, hyperproductive,  vector, arthropod, forecast, endmember, LULC modelling system.  In so doing, new 

theorems about the best approximation of a class of rational functions may be parsimoniously devised for robustly 

targeting, endmember geo-spectrotemporal, malaria, mosquito, geosampled, seasonal, aquatic, larval habitat, 

hypeproductive foci. Lack of uniqueness may optimally regressively quantitate   the numerical series of best 

approximations in ento-ecoepidemiological, capture point, endmember geo-spectrotemporal, prognosticated, aquatic, 

larval habitat, frequency, density count. 

 

A malariologist or medical entomologist may study Chebyshev systems defined on an interval in an ento-

ecoepidemiological, geo- eco-georeferenceable, malaria, mosquito, endmember, oviposition, prognosticative, 

orthogonal, endmember, LULC model whose constituent functions may be either complex or real–valued. As such, an 

invasive vulnerability analyses may be conducted in SAS applying differential equations for targeting geo-

spectrotemporal, seasonal, hyperprproductive, malaria, mosquito, capture point, endmember foci. These derivatives 

(e.g., geolocations of aquatic, larval habitat, geo-spectrotemporal, endmember, capture point,hyperproductive foci) 

cannot be solved by a mere rewording of existing proofs, especially those dealing with the existence of an adjoined 

function. The extension of the interval of definition, and the problem of embedding a set of time series, geosampled, 

LULC, endmember, capture point, orthogonal, explanatorial functions into an extended complete Chebyshev System 

may be a laborious task. An important special case of a Chebyshev system is a Markov function system. This 

system {ϕν(x)}nν=1 (n≤∞) of linearly independent, real-valued, continuous functions may be more easily orthogonally 

and ento-ecoepidemiologically definable on a finite interval [a,b] in an oviposition,  forecast, vulnerability, malaria, 

vector, arthropod, LULC, eigenfunction, spatial autocorrelation, eigendecomposition, explanatory model   whenst  

targeting eco-georeferenecable, hyperproductive, capture point, foci geolocations [2]. 

Consider an eco-georefereneceable, oviposition, malaria, mosquito, aquatic, larval habitat, ento-

ecoepidemiological, orthogonal, LULC, risk map constructed employing P: R n+1 → C ([a, b]) which may be given as 

a tuple (a0, a1, a2, . . . an) polynomial anx n + an−1x n−1 + · · · + a0. In so doing, a mapping P: R n+1 → C ([a, b]) 

may be achievable in order to diagnosis seasonal, hypeproductive, LULC, endemic foci, eco-georeferenceable, 

eigenfunction eco-geolocations. This endmember, orthogonal, eigenvector, orthogonal, risk mapping would be 

continuous. This means that if the geosampled, geo-spectrotemporal, LULC coefficients are changed slightly, the eco-

georeferenceable, capture point, grid-stratified polynomial will not change much in the uniform normality on [a, b]. 

Optimally a malariologist or medical entomologist wants to be able to show that he or she can restrict themselves to 

polynomials with small, robustly regressable, capture point, endmember, LULC, coefficient estimates of a seasonal, 

hyperproductive, aquatic, larval ,habitat foci[1]. Hence polynomials with large endmember, geo-spectrotemporal 

coefficients would not be good candidates in approximating,  unknown, hyperproductive, endemic, malaria, vector 
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arthropod, oviposition, capture point, aquatic, larval habitat model endmember, grid-sratifiable, signature, sub-meter 

resolution, frequency, wavelength,  LULC estimators. 

More specifically, a malariologist or medical entomologist may want to show that if P has a coefficient of 

absolute value greater or equal to M in an eco-georeferenceable, time series, oviposition, malaria, mosquito, sub-meter 

resolution, prognosticative, eco-endmember, LULC, signature, orthogonal, risk model then ||P|| ≥ kM for some constant 

k may be usable for optimally targeting unknown, seasonal, hyperproductive, grid-stratifiable, eco-endmember, aquatic, 

larval, habitat foci. In particular, this means that if kM > 2||f|| in the model, then P will provide worse approximations to 

f than the trivial polynomial which may be identically zero, (e.g., ||f − P|| ≥ ||P|| − ||f|| ≥ ||f|| = ||f − 0|| in the ento-

ecoepidemiological, capture point, LULC, model output. Having shown this claim, existence of the best approximating 

polynomial would follow from compactness of [−M, M] n+1 in any robust, endmember, sub-meter resolution, 

prognosticative, ento-ecoepidemiological model for optimally targeting, seasonal, unknown, eco-georeferenceable, 

hyperproductive, grid-stratifiable, malaria, mosquito, oviposition, LULC, capture point foci. 

One of the basic questions in approximation theory concerns the existence of best approximations. 

Specifically, let K be a subset of a normed linear space xEX   in an eco-georeferenceable, LULC, oviposition, grid-

stratifiable, orthogonal, capture point, malaria, mosquito, sub-meter resolution, endmember, signature, forecast, 

vulnerability, geo-spectrotemporal  model, for example.The (possibly empty) set of best approximations to x from K 

may be then defined by PK(x) = {y E K 1 [j x - y II = 4x, K)j,where d(x, K) = inf(li x - y /; / JJ E K]. The set K would 

be proximinal [e.g., if PK(x) contains at least (resp. exactly)]to at least one, eco-georeferenecable, hyperproductive, 

LULC, endmember, capture point for every xEX]. The vulnerability, endmember, oviposition, aquatic, larval habitat, 

forecast, vulnerability LULC mapping PK (x) + 2K could then be quantitated as   a metric projection onto K. In this 

terminology, the basic existence question may be phrased as: Which subsets of seasonal, geoclassified, malaria, 

mosquito, eco-endmember, aquatic, larval habitat, capture point, hyperproductive, LULC foci are proximinal to an eco-

georeferenceable, village, grid-stratified, centroid? There is much that is unknown concerning existence of best 

approximations in ento-epidemiological, remote sensing, malaria, vector arthropod, vulnerability, endmember, LULC 

models which may be resolvable employing Pearsons, correlation coefficient (PCC) 

In statistics, the PCC,) also referred to as the Pearson's r, Pearson product-moment correlation coefficient 

(PPMCC) or bivariate correlation, is a measure of the linear correlation between two variables X and Y [2]. In an ento-

ecoepidemiological, forecast, vulnerability, malaria, mosquito, oviposition, capture point, endmember, LULC, 

regression, signature  model, the PCC will have a value between +1 and −1, when 1 is total positive linear correlation, 0 

is no linear correlation, and −1 is total negative linear correlation[1]. Hence, Pearson's correlation coefficients rendered 

from such a seasonal, oviposition, forecast, vulnerability, endmember model may be precisely tabulated in probability 

space employing the covariance of two, geosampled, time series, capture point, frequency, wavelength, LULC, 

endmember explanators  divided by the product of their standard deviations. Defining the form of the approximate 

regressively, quantitable,  orthogonal inferences (e.g., targets of geosampled, seasonal, hyperproductive, geo-

spectrotemporal, capture point, endmember foci) would involve optimally determining a "product moment", that is, the 

mean (the first moment about the origin) of the product of the mean-adjusted, oviposition-related, capture point, 

geosampled, LULC, random variables. Hence the modifier product-moment should be theorectically optimally 

quantifiable in a robust, endmember, sub-meter resolution, frequency, capture point, signature, wavelength, malaria, 

mosquito, oviposition, eco-epidemiological, forecast, vulnerability, grid-stratifiable, LULC model for targeting 

seasonal, hyperproductive, aquatic, larval habitats. A value of 1 would imply that a linear equation describes the 

relationship between X and Y perfectly, with all geosampled, oviposition, capture points lying on a regression line for 

which Y increases as X increase. A value of −1 would imply that all the capture points lie on a line for which Y 

decreases as X increases. A value of 0 in the aquatic, larval, habitat, endemic model would imply that there is no linear 

correlation between the time series, geosampled, LULC variables. Factor-based, endmember, oviposition, malaria, 

mosquito models have been used extensively in the domain of collaborative filtering for eco-entomological, time series, 

forecast, vulnerability, capture point, modelling user preferences[1]. 

In eco-georeferenceable, endmember, malaria, mosquito, forecast vulnerability, oviposition, remotely sensed, 

regression, modeling, where sub-meter resolution, habitat signatures are the dependent variable, LULC factor variables 

may be assumed to be marginally independent whilst rating variables may be assumed to be conditionally independent. 
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The main drawback of such prognosticative, malaria, aquatic larval habitat, oviposition, orthogonal, endmember models 

is that inferring the posterior distribution over the factors given the ratings would reveal intractablity. Hence, many of 

the existing malaria, mosquito, capture point, predictive, endmember, LULC, risk modeling methods in literature resort 

to performing MAP estimation of eco-georeferenceable, oviposition, time series, geo-spectrotemporal, geosampled, 

capture point, aquatic, larval habitats and their, parameterizable estimators for optimally quantitating geolocations of 

seasonal foci and their covariates. Training such models amounts to maximizing the log-posterior over model 

parameters which may be conducted inefficiently due to large, non-parameterizable, diagnostic, clinical, field-

operational and remotely time series,  geosampled, aquatic larval, habitat, endmember, grid-stratified, eigenvector 

estimator, LULC datasets[1]. 

 In statistics, an expectation–maximization (EM) algorithm is an iterative method to find maximum likelihood 

or MAP estimates of parameters in statistical models, where the model depends on unobserved latent variables [2]. The 

EM iteration alternates between performing an expectation (E) step, which creates a function for the expectation of the 

log-likelihood evaluated employing the current estimate for the parameters [2], and maximization (M) step, which may 

compute eco-georeferenceable, geo-specified, malaria, mosquito, geo-spectrotemporal, non-parameterizable, 

oviposition, endmember, LULC, orthogonal, eigenvector   estimators maximizing the expected log-likelihood found on 

the E step. These parameter estimates may be employable to determine the distribution of the latent, eco-

georeferenecable, eigendecomposed, geo-spectrotemporal, hyperproductive, aquatic, larval, habitat, capture point, 

seasonal, immature, geosampled endmember, grid-stratifiable, LULC, optimizable variables in the next E step. 

Suppose a malariologist or medical entomologist has an estimation problem in which he or she has a training 

set {x (1), . . . , x(m)} consisting of n independent examples derived from an empricial, geo-spectrotemporal, 

optimizable, geoclassifiable, geosampled, eco-georeferenced, empirical, ento-ecoepidemiological dataset of aquatic, 

larval habitat, hyperproductive, capture point foci. If a malariologist or medical entomologist wishes to fit the LULC 

parameters of such a model p(x, z) to the empirical, seasonal, geosampled, malaria mosquito, signature data, the 

likelihood may be given by ℓ(θ) = Xm i=1 log p(x; θ) = Xm i=1 logX z p(x, z; θ) But, explicitly finding the maximum 

likelihood estimates of the geosampled oviposition, capture point, endmember  parameters θ may be difficult. Here, the 

z (i) ’s would be the latent random variables. In such a setting, the EM algorithm would render an efficient method for 

maximum likelihood estimation.  

Maximizing ℓ(θ) explicitly might be difficult to do in an ento-ecoepidemiological, malaria, mosquito, LULC, 

risk model, thus the strategy may be shifted to instead repeatedly constructing a lower-bound on ℓ (E-step), and then 

optimizing thr lower-bound (M-step). Hence for each i, in the mosquito model let Qi be some distribution over the z’s 

(P z Qi(z) = 1, Qi(z) ≥ 0). A malariologist or medical entomologist may then optimally target a seasonal, eco-

georeferenecable, hyerproductive,capture point foci employing the following:1 X i log p(x (i) ; θ) = X i logX z (i) p(x 

(i) , z(i) ; θ) (1) = X i logX z (i) Qi(z (i) ) p(x (i) , z(i) ; θ) Qi(z (i) ) (2) ≥ X i X z (i) Qi(z (i) ) log p(x (i) , z(i) ; θ) Qi(z 

(i)). The last step of this derivation would employ Jensen’s inequality. Specifically, f(x) = log x would be a concave 

function, since f ′′(x) = −1/x2 < 0 over its domain x ∈ R +. Also, the term X z (i) Qi(z (i) )   p(x (i) , z(i) ; θ) Qi(z (i) ) 

  in the summation would  just  be an expectation of the quantity p(x (i) , z(i) ; θ)/Qi(z (i)) with respect to z (i) drawn 

according to the capture point, malaria, mosquito, aquatic, larval habitat, normalized, LULC, endmember  distribution 

given by Qi. By Jensen’s inequality, the ento-ecoepidemiological, oviposition, signature, forecast, vulnerability LULC 

model would  have f   Ez (i)∼Qi   p(x (i) , z(i) ; θ) Qi(z (i))    ≥ Ez (i)∼Qi   f   p(x (i) , z(i) ; θ) Qi(z (i))    . 

Notice the “z (i) ∼ Qi” subscripts above indicate that the expectations are with respect to z (i) drawn from Qi. This 

would allow a malariologist or medical entomologist to go from iteratable interpolative equations efficiently for 

optimally determining statistically significant (e.g., 95% confidence interval) regressed endmember, geoclassified, 

LULC covariates which may be geo-spectrotemporally associated to a, eco-georeferenced, sub-meter resolution, grid-

stratified, capture point, seasonal, hyperproductive foci.  

Now, for determining eco-georeferenecable, optimizable, regression, LULC geoclassified, geolocations of 

seasonal, hypeproductive, capture point foci, from  any set of distributions Qi, rendered from an orthogonal,  malaria, 

mosquito model a lower-bound on ℓ(θ) must be provided. Unfortunately many possible choices for the Qis exist for 

these models. Which should a malariologist or medical entomologist choose? Well, if we have some current guess θ of 

an aquatic, larval habitat, ento-eco-epidemiological, geoclassified, LULC, sub-meter resolution, grid-stratifiable, 
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parameters, it seems natural to try to make the lower-bound tight at that endmember, geo-spectrotemporal, geosampled 

foci of θ. Hence a malariologist or medical entomologist could make the inequality above hold with equality at a 

particular seasonal, hyperproductive, larval density, value of θ. In so doing, ℓ(θ) may be proven to increase 

monotonically with successsive iterations of EM in an eco-georeferenceable, eto-ecoepidemiological, oviposition, 

predictive, risk-related, malaria, capture point, aquatic, larval habitat, grid-stratifiable, endmember, regression model. 

To make the bound tight for a particular geo-spectrotemporal, geosampled, prolific, eco-georeferenceable, geoclassified 

LULC, capture point value of θ, the reseachists may need to highlight the step involving Jensen’s inequality since such 

a derivation could hold with equality. For this to be true in any seasonal, eco-georeferenecable, malaria, mosquito, 

oviposition, regression, LULC model output, however, it may require that the expectation be taken over a “non-

constant”-valued, ento-ecoepidemiological, seasonal, geosampled, aquatic, larval habitat, capture point, explanatory, 

random variable [i.e., p(x (i) , z(i) ; θ) Qi(z (i) ) = c for some constant c that does not depend on z (i) ]. This is easily 

accomplished by choosing Qi(z (i) ) ∝ p(x (i) , z(i) ; θ). Actually, if a malariologist or medical entomologist knows Pz 

Qi(z (i) ) = 1 (as it is a normalized distribution), this further would allow the researchists to optimally  quantiate Qi(z (i) 

) = p(x (i) , z(i) ; θ) P z p(x (i) , z; θ) = p(x (i) , z(i) ; θ) p(x (i) ; θ) = p(z (i) |x (i) ; θ).In so doing, seasonal, 

ecogeoreferenecable, hyperproductive, aquatic, larval, habitat  foci may be identified, on geoclassifiable, sub-mter 

resolution, grid-stratifiable, LULCs. Thereafter, by simplying setting the Qi ’s to be the posterior distribution of the z (i) 

x (i) and setting the geosampled, geo-spectrotemporal, capture point, geoclassified, grid-stratifiable, LULC signature, 

aquatic, larval habitat, orthogonal, endmember parameters θ seasonal, hyperproductive, foci in an sub-meter resolution, 

capture point, grid-stratfied image may be optimally targeted. 

Now, for this choice of the Qi’s,the oviposition, endmember,geo-spectrotemporal, LULC  model should render  

a lower-bound on the loglikelihood ℓ that which the regression is trying to maximize. This is the E-step. In the M-step 

of the unmixing algorithm, the malaria researchers could maximize the formula with respect to the geosampled, capture 

point, aquatic, larval habitat, geo-spectrotemporal, endmember  LULC parameters to obtain a new setting of the θ’s in 

the orthogonal,  oviposition, signature model. Repeatedly carrying out these two steps would allow the EM algorithm, 

to devise geolocations of eco-georeferenceable, malaria, mosquito, seasonal, hypeproductive foci based on geosampled 

capture point, seasonal, immature, discrete, geosampled, density, count values. This process may be repeated until 

convergence (E-step) For each i, set Qi(z (i) ) := p(z (i) |x (i) ; θ). (M-step) would be able to define capture point, LULC 

covariates related to the prolific, aquatic larval habitats. By setting θ := arg max θ X i X z (i) Qi(z (i) ) log p(x (i) , z(i) ; 

θ) Qi(z (i)), the seasonal, grid-stratifiable, hyperproductive,  oviposition, eco-georeferenceable, aquatic, larval habitats 

could be mathematically described. 

Interestingly EM could cause the likelihood to converge monotonically. In such a description of the EM 

algorithm, an oviposition, malaria, forecast, vulnerability, endmember, LULC, sub-meter, resolution model would run 

until convergence. Given the result that we just showed, one reasonable convergence test would be to check if the 

increase in ℓ(θ) in the data is between successive iterations. In so doing, some endmember variables smaller than some 

tolerance parameters may be able to declare convergence if EM is improving ℓ(θ) too slowly. Hence if a malariologist 

or medical entomologist defines J(Q, θ) = X i X z (i) Qi(z (i) ) log p(x (i) , z(i) ; θ) Qi(z (i)) whenst conducting a malaria 

mosquito, risk mapping application , then it may be known that ℓ(θ) ≥ J(Q, θ) is  derivable  from the model diagnostic 

output. The EM can also be viewed a coordinate ascent on J, in which the E-step maximizes it with respect to Q whenst 

the M-step maximizes it with respect to θ. 

This research presents a general approach to iterative computation of maximum-likelihood estimates whenst 

regressable, geosampled, geoclassified, grid-stratified,  endmember,  oviposition, sub-meter resolution, malaria, 

mosquito, ( An. arabiensis),  aquatic, larval habitat, hyperproductive, capture point, sub-meter resolution, LULC 

observations are viewed as incomplete data. Since eachiteration of the algorithm consists of an expectation step 

followed by a maximization step it is called the EM algorithm [2]. The EM process is remarkable in part because of the 

simplicity and generality of the associated theory, and in part because of the wide range of examples which fall under 

its umbrella[3]. When the underlying complete endmember, capture point, malaria, mosquito, oviposition 

parameterizable estimator data comes from an exponential family whose maximum-likelihood estimates are easily 

computed, then each maximization step of an EM algorithm is likewise easily computable. The term "incomplete data" 

in its general form implies the existence of two sample spaces in the model [3]. The EM algorithm may be usable to 

geolocate maximum likelihood, endmember LULC, parameters within an eco-georeferenceable, geoclassified, 

oviposition, malaria, mosquito, sub-meter resolution, signature, probabilistic paradigm especially in cases where the 
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equations cannot be solved directly [1]. Typically these models would incorporate latent geo-spectrotemporality and 

latent frequency, geosampled, capture point, endmember, oviposition, regressable LULC explanators in addition to 

unknown, malaria, mosquito, seasonal, hyperproductive, foci estimators. The EM algorithm is used to find (locally) 

maximum likelihood parameters of a statistical model [2]. The presumption would be either missing endmember LULC 

values exist amongst the geosampled malarial, ento-ecoepidemiological, empiricial, capture point, sub-meter resolution, 

endmember data, or that the eco-georeferenceable model can be formulated more simply by assuming the existence of 

further unobservable, oviposition, grid-stratifiable, endmember datasets of geosampled, geo-spectrotemporal, seasonal, 

aquatic, larval habitats. For example, a mixture model may be describable more simply by assuming that each observed, 

malaria, mosquito, aquatic, larval, habitat, endmember foci has a corresponding unobserved data measurable point, or 

latent extraneous variable, specifying the mixture component to which each capture point, geoclassified, LULC foci 

belongs. Thereafter, computing a liklihood solution would require optimally regressively quantitating the derivatives of 

the likelihood function with respect to all the unknown, orthogonal,   capture point, endmember signature, LULC, 

habitat  values, the parameters and the latent variables.  In so doing, the capture point, forecast, vulnerability model, 

endmember output may simultaneously solve the resulting equations for optimally rendering robust realizations of eco-

georeferenceable, geolocations of capture point, seasonal, hyperproductive, aquatic, larval, habitat  foci.The result 

would be an interlocking solution which may require the geosampled, LULC endmember parameter estimator, geo-

spectrotemporal, values to be regressively displayed in eco-geographic space. Unfortunately substituting   any 

misspecified, endmember, LULC, signature prognosticators may render an unsolvable equation. 

In the moment-related literature, there is an endless discussion and a number of comparative experiments about 

what type of moments that provides the maximum separability of geospatial, geo-spectrotemporal, grid-stratifiable, 

geoclassifiable, non-heuristic, LULC objects for  

maximum robustness which optimally requires minimum computational time. Individual experiments in vector, 

malaria, eco-entomology, forecast, vulnerability, aquatic, larval habitat, orthogonal, endmember LULC, mapping have 

exhibited significant results employing product moments optimally geolocating eco-georeferenceable, hyperproductive, 

capture point foci[1]. For practical, endemic oviposition, ento-ecoepidemiological, capture point, predictive, risk 

modeling, endmember, seasonal hyperproductive foci applications, moments may be computed employing sub-meter 

resolution, grid-stratifiable eco-georeferenceable, LULC images where the focus scan may be on orthogonal grid-

stratfiable, sub-meter resolution polynomials. In mathematics, an orthogonal polynomial sequence is a family of 

polynomials such that any two different polynomials in the sequence are orthogonal to each other under some inner 

product [2]. 

In linear algebra, an inner product space is a vector space with an additional structure called an inner product 

[2]. This additional structure may associate each pair of ecogeoreferenceable, vector, aquatic, larval habitat, geo-

spectrotemporal, malaria mosquito, sub-meter resolution, grid-stratifiable, LULC covariates regressively derived from 

an oviposition, mosquito, malaria, empiricial, optimally geosampled parameter estimator, geo-spectrotemporal, 

endmember dataset in eco-geographic space with a scalar quantity known as the inner product of the vectors. Inner 

products may allow the rigorous introduction of intuitive geometrical notions such as the length of a vector or the angle 

between two vectors in a time series, forecast vulnerability, endmember, malaria, mosquito model. The means of 

defining orthogonality between vectors (i.e, zero inner product) in eco-geographic space of eco-georeferenceable, geo-

spectrotemporal, malaria, capture point, aquatic larval habitat, empricial datasets may hence robustly geolocate 

seasonal, endemic, hyperproductive, capture point, eco-entomological, foci.  

Inner product spaces also generalize Euclidean spaces (in which the inner product is the dot product, also 

known as the scalar product) to vector spaces of any (possibly infinite) dimension [2].Quantized  Euclidean distances 

from an eco-georeferenecable,  capture point, hyperproductive,  grid-stratified, orthogonal, high, malaria prevalence, 

African, riceland, agro-irrigated, village foci,  or urban environment complex ecosystem, for example,  may reveal  

seasonal, endemic, malaria transmission based on aquatic, larval, habitat geolocations and their specific, ento-

ecoepidemiological,eco-geographical,   attributes ( e.g., seasonal, geosampled, larval density, count values).  An inner 

product may induce associated norm, thus an inner product space in an eco-georeferenecd, vector, ento-

ecoepidemiological, forecast, vulnerability, sub-meter resolution, grid-stratifiable, geoclassifed, LULC, geo-

spectrotemporal, eco-georeferenceable, signature model could also be a normed vector space. In mathematics, a normed 

vector space is a vector space on which a norm is defined. In a vector space with 1- 2- or 3-dimensional vectors with 

real-valued entries, the idea of the "length" of a vector is intuitive [ 2]. 
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Let V be a vector space over K in an eco-georeferenceable, geoclassifiable, robust, oviposition ento-

ecoepidemiological, endmember, forecast, vulnerability, malaria, mosquito aquatic, larval, habitat, orthogonal, LULC 

map targeting seasonal, geosampled, eco-georeferenceable, hypeproductive foci.  A norm in V in the seasonal map x → 

∥x∥ from V to the set of non-negative, endmember, sub-meter resolution, grid-stratfiable, capture point, geosampled 

discrete integer,immature  count, values would be quantifiable such that 1). ∥x∥ = 0 if and only if x = 0.2). ∥αx∥ = |α|∥x∥ 

for all α ∈ K, x ∈ V .3. ∥x + y∥ ≤ ∥x∥ + ∥y∥ for all x, y ∈ V. A normed vector space is a real or complex vector space in 

which a norm has been defined [2]. Formally, a normed vector space is a pair (V, ∥ · ∥) where V is a vector space over 

K and ∥ · ∥ is a norm in V. This methodology usually refers to V as being the normed space. Unfortunately in an 

vulnerability, forecastable, oviposition, malaria, mosquito, prognosticative, geoclassifiable, LULC endmember, 

paradigm, a malariologist or medical entomologist has to consider more than one norm at the same time; then one u 

sub-indices on the norm symbol: ∥x∥1, for example. When dealing with several normed spaces it is customary to refer 

to the norm of a space denoted byV by the symbol ∥ · ∥V[6].  Other symbols for norms include | · | and ∥| · |∥.A 

complete space with an inner product is called a Hilbert space [2].  

The mathematical concept of a Hilbert space, generalizes the notion of Euclidean space. It may extend the 

methods of vector algebra and calculus from the 2-D Euclidean plane and 3-D space to spaces with any finite LULC, 

malaria, mosquito, capture pont quantifiable number of dimensions. A Hilbert space is an abstract vector space 

possessing the structure of an inner product that allows length and angle to be measured [2]. Further, Hilbert spaces are 

complete: there are enough limits in the space to allow the techniques of calculus to be employed for optimally 

remotely targeting, eco-georeferenecable, seasonal, hyperproductive, capture point, sub-meter resolution, grid-

stratifiable, oviposition, malaria, mosquito, immature habitats. Hilbert spaces are indispensable tools in the theories of 

partial differential equations, quantum mechanics, Fourier analysis (which includes applications to signal processing 

and heat transfer)—and ergodic theory, which forms the mathematical underpinning of thermodynamics. Apart from 

the classical Euclidean spaces, examples of Hilbert spaces include spaces of square-integrable functions, spaces of 

sequences, Sobolev spaces consisting of generalized functions, and Hardy spaces of holomorphic functions which may 

be important for optimally identifying eco-georeferenceable, seasonal, hyperproductive, malaria, mosquito, capture 

point endmember foci on sub-meter resolution, grid-stratifiable, LULC, geoclassified data. 

Hilbert space is a vector space with an inner product such that the norm defined by 

turns into a complete metric space[2]. If the metric defined by the norm is not complete, then is 

instead known as an inner product space. In linear algebra, an inner product space is a vector space with an 

additional structure called an inner product[3]. This additional structure  may associate each pair of malaria, mosquito, 

aquatic, larval habitat, oviposition, LULC, sub-meter resolution, time series, grid-stratifiable, endmember vectors in the 

space with a scalar quantity known as the inner product of the vectors. Inner products allow the rigorous introduction of 

intuitive geometrical notions such as the length of a vector or the angle between two vectors [3]. They may provide the 

means of defining orthogonality between vectors (zero inner product).  

Inner product, malaria, mosquito, aquatic larval habitat spaces generalize Euclidean spaces (in which the inner 

product is the dot product, also known as the scalar product) to vector spaces of any (possibly infinite) dimension. The 

dot produc may be definable for endmember, capture point, LULC, optimizable, 

 vectors  and  by where  may be a quantifiable, geomterical, geolcassifiable, optimal 

angle between the vectors and  is the norm. It may then follow that  if  is perpendicular to . The dot 

product therefore has th interpretation as the length of the projection of  onto the unit vector  when the two vectors 

are placed so that their tails coincide[3]. 

Examples of finite-dimensional Hilbert spaces may quantitate an empirical geosample datatset of sub-mter 

resolution wavenegth, malaria, mosquito, capture point, aquatic, larval habitats. The LULC, count larval denisties 

with the vector dot product of and . Then identy hyperproductive foci. The complex numbers with 

the vector dot product of and the complex conjugate of . An example of an infinite-dimensional Hilbert space is 
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, the set of all functions such that the integral of over the whole real line is finite[4]. The inner product 

is . 

  A Hilbert space is always a Banach space, but the converse need not hold in a malaria, mosquito, capture 

point, forecast, endmember LULC model.Banach space is a complete vector space with a norm . Two norms 

and are called equivalent if they give the same topology, which is equivalent to the existence of constants 

and such that and hold for all .[4]. In the finite-dimensional case, all norms are 

equivalent [3]. An infinite-dimensional space may have many different norms in an ovispoition, endmember, 

orthogonal, LULC, geo-spectrotemporal, prognosticative, grid-stratifiable, sub-meter,resolution, hyperproductive, foci 

model. A basic example is -dimensional Euclidean space with the Euclidean norm. Usually, the notion of Banach 

space is only used in the infinite dimensional setting, typically as a vector space of functions. For example, the set of 

continuous functions on closed interval of the real line with the norm of a function given by is a 

Banach space, where denotes the supremum. On the other hand, the set of continuous functions on the unit interval 

with the norm of a function may be given by which may not be a Banach space in the 

LULC model because it may not be complete. For instance, the Cauchy sequence of functions 

may not converge to a continuous function when predictively, optimally 

targeting, eco-georeferenceable, LULC, hyperrpoductive, seasonal, malaria, mosquito foci.  

Hilbert spaces with their norm given by the inner product may be examples of Banach spaces in an ento-

ecoepidemiological, ovispsoition, sub-meter resolution, endemic, grid-stratifiable, LULC endmember model for 

targeting seasonal, hyperproductive, aquatic, larval habitat foci. While a Hilbert space is always a Banach space, the 

converse need not hold [see 4]. Therefore, it is possible for a Banach space in a forecast vulnerability ento-

ecoepidemiological model not to have a norm given by an inner product. For example, the supremum norm cannot be 

given by an inner product in the model. An inner product is a generalization of the dot product[4]. A vector space, it is a 

way to multiply vectors together, with the result of this multiplication being a scalar[6]. More precisely, for a real 

vector space, an inner product satisfies the following four properties. Let , , and be vectors and be a scalar, 

then: 1. . 2. . 3. . 4. and equal if and only if 

[4]. 

The fourth condition in the list above is known as the positive-definite condition. Related thereto, note that 

some authors define an inner product to be a function satisfying only the first three of the above conditions with 

the added (weaker) condition of being (weakly) non-degenerate (i.e., if for all , then ). In such 

literature, functions satisfying all four such conditions are typically referred to as positive-definite inner products 

[4],though inner products which fail to be positive-definite are sometimes called indefinite to avoid confusion. This 

difference, though subtle, may introduce a number of noteworthy phenomena in an endmember, malaria, mosquito, 

aquatic, larval habitat, endmember LULC, sub-meter resolution, geo-spectrotemproal, prognosticative, capture point,  

models For example, inner products which fail to be positive-definite in such models may give rise to "norms" which 

yield an imaginary magnitude for certain vectors (such vectors are called spacelike) and which induce "metrics" which 

fail to be actual metrics for optimally targeting, seasonal, eco-georeferenecable, LULC, seasonal, hyperproductive, 

endmember foci.  
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The Lorentzian inner product is an example of an indefinite inner product which may be employable in a 

malaria, mosquito, oviposition, aquatic, larval habitat, endmember LULC, grid-stratifiable forecast, vulnerability 

model. A vector space together with an inner product on it is called an inner product space[3]. This definition may 

apply to an abstract vector space over any field in the model when targeting seasonal, hyperproductive, endmember 

foci. Examples of inner product spaces in the model may include  , where the inner product may be given by 

. The Euclidean space , where the inner product is given by the dot product 

 [3], in the endmember, LULC model vector 

space may reveal real functions whose domain is an closed interval with inner product for 

targeting seasonal, hyperrpoductive foci. When given a complex vector space, the third property may be replaced by 

where refers to complex conjugation[6]. The inner product is called a Hermitian inner product and a 

complex vector space with a Hermitian inner product is called a Hermitian inner product space[2].  

Every inner product space is a metric space. The metric is given by If this process 

results in a complete metric space in a sub-meter resolution, endmember, LULC, geo-spectrotemporal, endemic, 

forecast, vulnerability, grid-stratfiiable model, it may be  a Hilbert space. What's more, every inner product in the ento-

ecoepidemiological model output may naturally induce a norm of the form whereby it follows that every 

inner product space is also a normed space. As noted above, inner products in the malaria model which fail to be 

positive-definite yield "metrics" - and hence, "norms" - which are actually something different due to the possibility of 

failing their respective positivity conditions. For example, -dimensional Lorentzian Space (i.e., the inner product space 

consisting of with the Lorentzian inner product) may come equipped with a metric tensor of the form 

and a squared norm of the form for all vectors 

.which may be usable for forecasting seasonal, hypeproductive, malaria, mosquito, aquatic, larval 

habitat, capture point foci In particular, a malarilogist or medial entomologist  may have negative Euclidean distances 

and squared norms, as well as nonzero vectors whose vector norm is always zero in the model. As such, the metric 

(respectively, the norm) may actually be a habitat metric. 

In mathematics, a Sobolev space is a vector space of functions equipped with a norm that is a combination of 

Lp-norms of the function itself and its derivatives up to a given order. The derivatives are understood in a suitable weak 

sense to make the space complete, thus a Banach space. Intuitively, a Sobolev space is a space of functions with 

sufficiently many derivatives for some application domain, such as partial differential equations, and equipped with a 

norm that measures both the size and regularity of a function. For , an open subset of , and , 

the Sobolev space is defined by where , 

, and the derivatives are taken in a weak sense [4]. When endowed with the 

norm is a Banach space[7]. In the special case , is denoted by . 

This space is a Hilbert space for the inner product . 

In mathematics, more specifically in functional analysis, a Banach space is a complete normed vector space 

[2]. Thus, a Banach space is a vector space in an  ento-ecoepidemiological, forecast, vulnerability, oviposition, 

predictive, endmember, sub-meter resolution, LULC, grid-stratified, risk model with a metric that allows the 

computation of vector length and distance between vectors which would be complete in the sense that a Cauchy 

sequence of vectors would always converge to a well defined limit (e.g., seasonal, geosampled, malaria mosquito, 

capture point, hypeprproductive, foci). In mathematics, a Cauchy sequence is a sequence whose elements become 

arbitrarily close to each other as the sequence progresses [2]. More precisely, given any small positive distance between 

oviposition, geosampled, geo-spectrotemporal, eco-georeferenced, malaria, mosquito, capture point, hyperproductive, 

aquatic, larval habitats all but a finite number of elements of the sequence would be less than that given distance from 

each other. Their importance would come from the fact that solutions of partial differential equations are naturally 
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found in Sobolev spaces, rather than in spaces of continuous functions and with the derivatives understood in the 

classical sense. 

In mathematics, a holomorphic function is a complex-valued function of one or more complex variables that is 

complex differentiable in a neighborhood of every capture point in its domain. The existence of a complex derivative in 

an eco-georeferenced, geoclassified, geospectrotemporal neighborhood (e.g., seasonal, hyperproductive, malaria, 

mosquito, oviposition foci) implies that any holomorphic function is actually infinitely differentiable and equal to its 

own Taylor series (analytic). In mathematics, a Taylor series is a representation of a function as an infinite sum of terms 

that are calculable from the values of the function's derivatives at a single point (e.g., seasonal, eco-georeferenecd, 

malaria, mosquito, aquatic, larval habitat, capture point, endmember, sub-meter resolution, grid-stratified, LULC foci). 

Holomorphic functions are the central objects of study in complex analysis as complex differentiation is linear and 

obeys the product, quotient, and chain rules; the sums, products and compositions of holomorphic functions are 

holomorphic, and the quotient of two holomorphic functions is holomorphic wherever the denominator is not zero [2]. 

If a malariologist or medical entomologist  identifies C with R2
 
in a grid-stratifiable, ento-ecoepidemiological, 

geosampled, vulnerability, malaria, mosquito, oviposition, capture point, aquatic, larval habitat, sub-meter resolution, 

orthogonal eigenfunction, spatial filter, model whilst targeting, eco-georeferenecable,  seasonal, prolific foci, then the 

holomorphic functions would  coincide with those functions of any  geosampled, capture point, LULC, endmember, 

signature variable with continuous first derivatives which could  solve the Cauchy–Riemann equations, a set of two 

partial differential equations. In the field of complex analysis in mathematics, the Cauchy–Riemann equations, consist 

of a system of two partial differential equations which, together with certain continuity and differentiability criteria, 

form a necessary and sufficient condition for a complex function (e.g., constructing an equation that contains unknown 

multivariable LULC functions and their eco-georeferenceable, orthogonal,  prognosticative, ento-ecoepidemiological, 

endmember model, vulnerability, estimator, partial derivatives.)  to be complex differentiable, that is, holomorphic. The 

Cauchy–Riemann equations on a pair of real-valued functions of two real variables u(x,y) and v(x,y) are the two 

equations[2]. 

Every holomorphic function can be separated into its real and imaginary parts, and each of these is a solution 

of Laplace's equation on R2[3]. In other words, if a malariologist or medical entomologist  expresses  a holomorphic 

function f(z) as u(x, y) + i v(x, y)  in an orthogonal,  prognosticative, time series dependent, regression, malaria, 

mosquito, oviposition, vulnerability, ento-ecoepidemiological, endmember, LULC, vulnerability, signature paradigm 

both u and v would be  harmonic functions, whent v is the harmonic conjugate of u. 

The scalar form of Laplace's equation is the partial differential equation where is the Laplacian[3]. 

The Laplacian for a scalar function is a scalar differential operator defined by 

where the are the scale factors of the 

coordinate system [4]. Note that the operator is commonly written as by mathematicians [2]. Laplace's equation 

may be a special case of the Helmholtz differential equation with , or Poisson's equation 

with  in an oviposition, endmember,LULC,sub-meter resolution, malaria, mosquito, model for 

targetinh seasonal, hyperproductive, capture point foci. 

  The Helmholtz differential equation is an elliptic partial differential equation given by where 

is a scalar function and is the scalar Laplacian, or where is a vector function and is the vector 

Laplacian whenst , the Helmholtz differential equation reduces to Laplace's equation[2]. Whenst  (i.e., for 

imaginary ), the equation becomes the space part of the diffusion equation. The Helmholtz differential equation can be 

solved by separation of variables in only 11 coordinate systems, 10 of which (with the exception of confocal 

paraboloidal coordinates) are particular cases of the confocal ellipsoidal system: Cartesian, confocal ellipsoidal, 

confocal paraboloidal, conical, cylindrical, elliptic cylindrical, oblate spheroidal, paraboloidal, parabolic cylindrical, 

prolate spheroidal, and spherical coordinates (see Eisenhart 1934ab for more detail). Laplace's equation (the Helmholtz 

differential equation with  is separable in the two additional bispherical coordinates and toroidal coordinates[4]. If 
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Helmholtz's equation is separable in a three-dimensional coordinate system, then an oviposition, ento-

ecoepidemiological, vulnerability, malaria, mosquito, hyperproductive, seasonal, aquatic, larval habitat, eco-

georeferenecable, predictive, endmember, geoclassifiable, optimizable, LULC model may  show that 

where  formally regressively exists. The Laplacian is 

[3]which simplifies 

to Such a coordinate system 

may obey the Robertson condition, which means that the Stäckel determinant is of the form 

For the Helmholtz differential equation to be separable in a coordinate system, the scale 

factors  in the Laplacian and the functions  and  defined 

by must be of the form of a Stäckel 

determinant [4].A Stäckel tdeterminant used to determine in which 

coordinate systems the Helmholtz differential equation is separable [3]. A determinant in 

which are functions of alone is called a Stäckel determinant. A coordinate system is separable if it obeys the 

Robertson condition, namely that the scale factors in the Laplacian which 

may be rewritten in terms of functions  which may be robustly defined by 

,, such that can 

occurs in a malaria mosquito model output. When this is true, the separated equations are of 

the form The s obey the minor, frequency forecast 

equations = , =  and = which may 

be mathematically, geo-spectrotemporally  equivalent to 

,  and  also in a 

malaria model output.This gives a total of four equations in nine unknowns. Morse and Feshbach (1953, pp. 655-666) 

give not only the Stäckel determinants for common coordinate systems, but also the elements of the determinant 

(although it is not clear how these are derived).  

For  Helmhotz equation to be seperable in a coordinmate system for constructing a model for   optimally 

targeting seasonal, eco-georerenceable, LULC, hyperproductive, malaria, mosquito, aquatic, larval habitat, endmember, 

sub-meter, resolution, grid-stratifiable, endmember, capture points, the scale factor  in the Lapacian 
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 must be solved. For the Helmholtz differential equation to be separable in a 

coordinate system, the scale factors in the Laplacian and the functions and must be  clearly defined by 

 whichmay  be of of the form of a Stäckel determinant 

[4]. 

The vector Laplace's equation for an eco-endmember, oviposition, malaria, mosquito, grid-stratfiable, LULC 

model for targeting, capture point, seasonal, capture point, hyperproductive foci may be given by A function 

which satisfies Laplace's equation is said to be harmonic[2]. A solution to Laplace's equation has the property that the 

average value over a spherical surface is equal to the value at the center of the sphere Gauss's harmonic function 

theorem states[4]. If a function is harmonic in a sphere, then the value of at the center of the sphere is the arithmetic 

mean of its value on the surface [2].  Solutions rendered from a mlaria mosquito, forecast, vulnerability model may 

have a local maxima or minima. Because Laplace's equation is linear, the superposition of any two solutions may also 

then be  a solution in any seasonal, hyperproductive, malaria, mosquito, aquatic, larval habitat, eco-endmember, sub-

meter, resolution, capture point, prognosticative, vulnerability oviposition,LULC model.  

A solution to Laplace's equation for constructing a robust, endmember, eco-georeferenecable, geo-

spectrotemporal, oviposition, forecast, vulnerability, eigendecomposable paradigm would be uniquely determined if (1) 

the value of the sub-meter resolution, grid-stratifiable, LULC function is specified on all endmember habitat boundaries 

(or (2) the normal derivative of the function is specified on all boundaries as specified Laplace's equation. This 

endmember orthogonal model may be solved by separation of the geosampled, endmember, aquatic, larval habitat, 

geosampled, geo-spectrotemporal, capture point, seasonal, hyperproductive foci  variables in all 11 coordinate systems. 

An elliptic partial differential equation given by where is a scalar function and is the 

scalar Laplacian, or  where is a vector function and is the vector Laplacian[4].  A second-

order partial differential equation, i.e., one of the form is called 

elliptic if the matrix[4]. is positive definite. Elliptic partial differential equations have applications in almost 

all areas of mathematics, from harmonic analysis to geometry to Lie theory, as well as numerous applications in 

physics. As with a general PDE, elliptic PDE may have non-constant coefficients and be non-linear. Despite this 

variety, the elliptic equations have a well-developed theory.The basic example of an elliptic partial differential equation 

is Laplace's equation [5].in -dimensional Euclidean space, where the Laplacian  is defined 

by  

Other examples of elliptic equations include the nonhomogeneous Poisson's equation and the non-

linear minimal surface equation.For an elliptic partial differential equation, boundary conditions are used to give the 

constraint  on , where holds in .One property of constant 

coefficient elliptic equations is that their solutions can be studied using the Fourier transform. Consider Poisson's 

equation with periodic . The Fourier series expansion is then given by where  is called the 

"principal symbol," and so we can solve for . In mathematics, a Fourier series (English: /ˈfʊəriˌeɪ/)
[1]

 is a way to 

represent a function as the sum of simple sine waves. More formally, it decomposes any periodic function or periodic 

signal into the sum of a (possibly infinite) set of simple oscillating functions, namely sines and cosines (or, 

equivalently, complex exponentials)[4].  
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The discrete-time Fourier transform is a periodic function, often defined in terms of a Fourier series. 

In mathematics, the discrete-time Fourier transform (DTFT) is a form of Fourier analysis that is applicable to the 

uniformly-spaced samples of a continuous function[2]. The term discrete-time refers to the fact that the transform 

operates on discrete data (samples) whose interval often has units of time. Our assumption was the capture point 

vulnerability forecast, samples, it produces a function of frequency that is a periodic summation of the continuous 

Fourier transform of the original continuous function. Under certain theoretical conditions, described by the sampling 

theorem, the original continuous function can be recovered perfectly from the DTFT and thus from the original discrete 

samples[6].  Except for , the multiplier was nonzero in the model.  

In Jacob et al. (2013), the discrete-time, capture point, sub-meter resolution, grid-stratfied LULC signal was 

considered as a continuous signal  geosampled at a rate  or , where  was the sampling period 

(time interval between two consecutive habitat samples). The corresponding sampling function (comb function) 

was . 

The habitat, capture point, eco-endmember, LULC, sampling process was found to 

be where  was the signature habitat, 

spectral value of  at . The Fourier transform of this discrete signal 

was  We 

determined this to be  the forward Fourier transform (analysis) of a discrete signal . The spectrum  in the 

capture point, immature habitat, endmember.LULC model was periodic with 

:  

as .To get back the time signal  from its spectrum:  . 

The authors multiplied the equation by  and integrated both sides with respect to  over the 

period  to obtain the inverse Fourier transform (synthesis) 

were Then they used 

Note that the authors also used  

 

the   expression  

which was compared this with  
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To summarize, the spectrum of a given discrete habitat signal, Jacob et al. (2013) employed 

 which was found by forward Fourier transform to 

be: and the signal was re- expressed by the 

inverse Fourier as  

It may be interesting to compare this discrete time Fourier transform pair with  a Fourier series habitat expansion - the 

Fourier transform of a periodic, eco-endmember LULC, malaria mosquito 

signal: ith 

discrete spectrum:  . A symmetry between 

these two different forms of Fourier transform may be important for  asymptotically quantitating a absolute iterative 

interpolative habitat signal for targeting unknow foci. If the signal  is periodic, its spectrum  is 

discrete, the coefficients of the Fourier series may have an interval . On the other hand, if  is discrete 

with interval , its spectrum  may be periodic. In particular, if the unit of time is so 

chosen that the sampling period is , then , and the forward Fourier transform of a discrete signal 

may become:  Other  discrete habitat solutions may eb    

summarized  as in  Table 1 below. 

Table 1 Dirichlet boundary conditions which may be employable for an endmember, oviposition, sub-meter 

resolution, malaria, mosquito, forecast, vulnerability, LULC model 

Coordinate System Variables Solution Functions 

Cartesian  

 

exponential functions, circular functions, hyperbolic functions 

circular cylindrical  

 

Bessel functions, exponential functions, circular functions 

conical  

 
ellipsoidal harmonics, power 

confocal ellipsoidal  

 

ellipsoidal harmonics of the first kind  

elliptic cylindrical  

 

Mathieu function, circular functions 

oblate spheroidal  

 

Legendre polynomial, circular functions 

parabolic 

 
Bessel functions, circular functions 

parabolic cylindrical  

 
parabolic cylinder functions, Bessel functions, circular functions 

paraboloidal  

 

circular functions  

prolate spheroidal 

 

Legendre polynomial, circular functions 
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  In addition to these 11 coordinate systems, separation can be achieved in two additional coordinate systems 

by introducing a multiplicative factor for optimally targeting, eco-georefernecable,  hyperproductive, capture point, 

aquatic, larval, habitat,malaria mosquito, geoclassified,  LULC, seasonal  foci. In these coordinate systems, the 

separated form would be  and setting where are 

scale factors, may then give the Laplace's equation If the 

right side is equal to , where is a constant and is any function, and if 

where is the Stäckel determinant, then the equation can be solved using the methods of the 

Helmholtz differential equation.  

The two systems where this is the case are bispherical and toroidal, bringing the total number of separable 

systems for Laplace's equation to 13 (Morse and Feshbach 1953, pp. 665-666). In two-dimensional bipolar coordinates, 

Laplace's equation is separable, although the Helmholtz differential optimal equation is not.  

 may be Laplace equations which when solved may reveal 

gelocations of eco-georeferenecable, endmember, LULC, seasonal, hyperproductive, malaria, mosquito, aquatic, larval 

habitat, foci. 

A Laplace operator for a function f (x) in an oviposition, malaria, mosquito model may be defined on a Hilbert 

space[2] in a  seasonal, hyperproductive, aquatic, larval habitat, sub-meter, resolution, grid-stratifiable, eco-

georeferenceable, capture point, forecast, vulnerability, LULC, endmember model. A Hilbert space is a vector 

space  with an inner product  such that q quantaifiable,  norm defined by turns  into a complete 

metric space[3]. If the metric defined by the norm is not complete, then  is instead known as an inner product space. 

Examples of finite-dimensional Hilbert spaces include 1, the real numbers   with  the vector dot 

product of  and .2[4]. The complex numbers  with  the vector dot product of  and the complex 

conjugate of .may be employed in Hilbert space for targeting seasonal, prolific, vector arthropod, immature habitats. 

An example of an infinite-dimensional Hilbert space is , the set of all functions  such that 

the integral of  over the whole real line is finite[3]. In this case, the inner product is  .An 

(incomplete) space with an inner product is also called a pre-Hilbert space, since its completion with respect to the 

norm induced by the inner product is a Hilbert space[4]. Inner product spaces over the field of complex numbers such 

as geosampled, geo-spectrotemporal, eco-entoepidemiological, seasonal, malaria, mosquito, capture point, eco-

georeferenceable, larval density counts are may be referred to as unitary spaces[1]. 

A malariologst or medical entomologist may develop basic properties of unitary Hilbert space representations 

of topological groups in an eco-georeferenced, ento-ecoepidemiological, malaria, mosquito, oviposition, endmember, 

sub-meter resolution, aquatic, larval habitat, oviposition, signature, vulnerability, LULC map. The groups G may be 

locally-compact, Hausdorff, and countably based. One purpose of such a quantitation would be to isolate techniques 

which may result in identifying seasonal, hyperproductive, capture points which may not be dependent upon additional 

structure of the groups. Much can be done in the representation theory of compact groups without anything more than 

the compactness [3]. Similarly, the discrete decomposition of L 2 (Γ\G) for compact quotients Γ\G may depend upon 

nothing more than quantiting compactness in an vulnerability, malaria,oviposition  model. Schur orthogonality and 

inner product relations can then be proven for discrete time series, eco-georeferenced, aquatic, larval habitat, capture 

point,orthogonal, prognosticative representations inside regular representations which may be discussed without further 

hypotheses. The purely topological treatment of compact groups in an oviposition, malaria, forecast, vulnerability, 

capture point, seasonal, endmember, LULC, risk map may reveal  a degree of commonality between subsequent 

treatments of Lie groups and of p-adic groups, whose rich details might otherwise obscure the simplicity of some 

geosampled habitat properties. By reviewing Haar measure, and proving  the some basic things about invariant 
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measures on quotients H\G may be regressively discernible in  an eco-georefereneced,LULC datatset of oviposition 

malaria, mosquito, geoclassifiable, grid-stratifiable, sub-meter resolution, seasonal, hyperproductive, aquatic, larval 

habitat, capture point, endmember, signature foci.This notation  may refer to a quotient on the left, consisting of cosets 

Hg in the model. Hence by considering Gelfand-Pettis integrals for continuous, compactly-supported, vector valued, 

aquatic, larval, habitat functions with their immature, geosampled, geo-spectrotemporal, endmember, density, county 

values in Hilbert spaces eco-georeferenceable, capture point, hyperproductive foci may be remotely identifiable.  

Emphasizing discretely occurring representations unfortunately may neglect continuous Hilbert integrals of 

these habitat representations.  Nevertheless  these discrete series  may be suffice for sub-meter resolution, vulnerability, 

forecast endmember malaria, mosquito, LULC modeling  compact groups in emprically regressable, malaria mosquito, 

capture point, empirical ento-ecoepidemiological datasets. Though it entails some complications, throughout the model 

construction process, attention to closed central subgroups Z of groups G, may distinguish various spaces of functions 

on G by their behavior under Z in a malaria model whenst targeting eco-georeferenecable seasonal, hyperproductive, 

aquatic, larval habitat, endmember, sub-meter, resolution, grid-stratifiable, capture points. These complications may be 

genuine. This issue may come up a with GL(2, R) and GL(2, Qp), which have discrete series representations modulo 

within their centers, but not otherwise However, moments produced using orthogonal basis sets  may exist for modeling 

seasonal, hyperproductive, malaria mosquito, sub-meter resolution, grid-stratified, endmember,LULC data. These 

orthogonal moments may have the advantage of needing lower precision to represent differences (e.g., seasonal 

productive discrete, aquatic, larval habitat, capture point, explanatory, endmember, integer values quantitated 

seasonally) to the same accuracy as the monomials. The orthogonality condition would then simplify the reconstruction 

of the original function from the generated moments which may be employable to target, eco-georefereneceable, LULC, 

endmember, hyperproductive, capture point foci.  

 Compared to geometric moments, orthogonal moments may be suitable for oviposition, malaria, mosquito, 

endmember, reference, signature regression considerations whenst targeting, for seasonal, hyperproductive eco-

georeferenecable, LULC foci based on geosampled, immature, ento-ecoepidemiological, endmember, capture 

point,geo-spectrotemporal, count data because of their simplicity. Amongst various orthogonal moments Gaussian–

Hermite (GH) moments play a special role. The GH polynomials and moments may be introduced into grid-stratified, 

sub-meter resolution, malaria, mosquito, capture point, image analysis of an optimizable, seasonal, hyperproductive, 

capture point, ento-ecoepidemiological, foci geolocation which may prove to be very robust to additive noise compared 

to other common endmember moments. GH polynomials are orthogonal on a rectangular area[3], which  may be  

suitable when working with digital images of malaria, mosquito, seasonal, hyperproductive, immature habitats  The 

polynomials orthogonal on a disk, such as Zernike, radial Chebyshev, and similar polynomials, would require polar 

resampling of the capture point, aquatic, larval, habitat  image, which not only would increase the computation time but 

also lead to the loss of precision in the forecasted vulnerability  targets ( i.e., seasonal, hyperproductive, eco-

georeferenecable,  foci, LULC  geolocations). Generally, it would be difficult to construct rotation invariants, which are 

important for object recognition in a sub-meter resolution, grid-stratifiable, malaria, mosquito, capture point, 

endmember, habitat signature image from moments orthogonal on a rectangle (on the contrary, the moments orthogonal 

on a disk can be made rotation-invariant easily. The GH moments are the only moments orthogonal on a rectangle 

which offer a possibility of an easy and efficient design of rotation invariants [3]. This is guaranteed by the Yang's 

Theorem, which holds in 2D. In case of other common moments in a sub-meter resolution, capture point, malaria 

mosquito, seasonal hyperproductive, grid-stratified, LULC   image, the scaling invariance may be achieved easily by 

normalizing the moments in the regression model by employing a mean gray level of the image.  

Analysis of covariance for optimally conducting malaria, mosquito, immature habitat, capture point, parameter 

estimator, geoclassifiable, orthogonal, ento-epidemiological, LULC approximation (i.e., statistical significance 

validating) for a general capture point, linear model could blend ANOVA and regression. ANCOVA  may evaluate 

whether a geosampled, eco-georeferenceable, aquatic, larval, habitat, sub-meter resolution, capture point, geo-

spctrotemporal, empirical, geosampled, LULC dataset of population frequency means of an eco-entomological, 

explanatory, dependent variable ( e.g., total seasonal, immature counts) are  quantitable across levels of  categorical 

independent variables, whilst statistically controlling for the grid-stratified, endmember, LULC effects of other 

continuous variables that may be primary interest, (e.g., nuisance, capture point variables). Mathematically, ANCOVA 

will decompose the variance in the dependent variable into explainable residual variance [2].  
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Intuitively, ANCOVA can be employed for 'adjusting' the dependent variable in an ento-ecoepidemiological, 

sub-meter resolution, grid-stratifiable, eco-georeferenecable, LULC, oviposition, orthogonal,  malaria, mosquito, 

endmember, forecast, vulnerability model for seasonally targeting hyperproductive foci by the group means of the 

conditional variance. ANCOVA may be also employable to increase statistical power (e.g., the ability to find a 

significant difference at 95% confidence interval between  multivariate, geoclassified empirical, LULC groups) by 

reducing the within-group error variance. In order to understand this regression methodology for optimally targeting, 

seasonal, oviposition,  eco-georeferenceable, aquatic, larval habitat, endmember, hyperproductive foci it may be 

necessary for the malariologist medical entomologist or other experimenter to understand the test used to evaluate 

differences between the endmember LULC groups, (i.e.,the F-test).  

The F-test is computed by dividing the explained variance between groups (e.g., eco-georeferenceable, 

seasonal, hyperproductive, malaria mosquito, oviposition, sub-meter resolution, grid-stratified, LULC imaged, capture 

points) by the unexplained variance within the groups. If the analysis of covariance in the oviposition, forecast, 

vulnerability, endmember, geo-spectrotemporal model reveals a significant difference between the tabulated slopes in 

the regression lines in the ento-ecoepidemiological, grid-stratified, LULC, geoclassifiable, malaria model output, there 

may be evidence that the linear relationship between X and Y varies with the value of the blocking factor in the model.  

If multiple values of Y are collected at the same capture point, X, this can act as another type of blocking, with 

the unique geo-spectrotemporal, sub-meter resolution, grid-stratfiable, (i.e., orthogonal), malaria, mosquito geosampled, 

aquatic, larval habitat values of X acting as blocks. These multiple Y capture point, immature habitat, eco-

georeferenced, LULC  measurements may be less variable than the overall variation in Y, and, given their common 

value of X, they may not truly be independent of each other. If there are many replicated X endmember, oviposition, 

forecast, vulnerability, regressable,LULC values in the ento-ecogeoreferenceable, orthogonal model and if the variation 

between Y at replicated values is much smaller than the overall,  quantitated, tabulated, residual variance, then the 

variance of the estimate of the slope may be too small, making the test of whether the slope is 0 (and, equivalently, the 

test of the goodness of linear fit) anticonservative (i.e., more likely than the stated significance level to reject the null 

hypothesis, even when it is true). In this case, an alternative method may be employable for optimally regressively 

quantitating sub-meter resolution, grid-stratifiable,seasonal, endmember, malaria, mosquito, 

hyperproductive,oviposition  foci from  an empirical, operational, LULC dataset of  geo-spectrotemporal,  capture 

point, aquatic, larval habitat, eco-georefernceable estimators by replacing each replicated X value (e.g., single, 

geosampled foci, count) with the average Y value, and then performing  the regression analysis with the new dataset of 

geomorphological, geo-spectrotemporal, geosampled, independent variables. A possible drawback to this method may 

be that by reducing the number of geosampled, oviposition, capture points, explicative, diagnostic, terrain-related  

descriptors  the degrees of freedom associated with the residual error may be  reducable, thus potentially reducing the 

power of the test.  

Whether the Y values are independent of each other in an ento-ecoepidemiological, prognosticative, sub-meter 

resolution, grid-stratifiable, oviposition, malaria, mosquito, forecast, vulnerability, endmember, LULC   model may be 

determined by the structure of the experiment from which they arise. Y values collected over time may be serially 

correlated whenst time is the implicit factor, for example. If the ento-ecoepidemiological data are in a particular order, 

the possibility of dependence may be considered in the model. If the row order of the geosampled, malaria, mosquito, 

grid-stratified, capture point,sub-meter resolution, geo-spectrotemporal,   oviposition, LULC  data reflect the order in 

which the data were collected, an index plot of the explanatory,  immature, eco-georeferenceable, frequency, 

wavelength, count data values plotted against row numbers ( e.g., seasonal geosampled larval counts) in a covariance 

matrix may reveal patterns in the plot that could suggest possible seasonal effects. An index plot is a scatterplot of data 

plotted serially against the observation (case) number within a sample dataset (e.g., original geosampled, oviposition, 

sub-meter resolution, capture point, seasonal, hyperproductive, eco-georeferenceable, geoclassifiable, endmember, 

LULC observations) or some regressively deriveable measure, such as residuals or predicted values [2]. For 

quantitating, orthogonal, geosampled, serially correlated, endmember, hyperproductive, malaria, ento-

ecoepidemiological, oviposition, capture point, Y values in a forecast, vulnerability, linear model, the estimates of the 

slope and intercept must be unbiased, otherwise the estimates of their variances may not be reliable.  

 

Values may not be identically distributed because of the presence of outliers in an oviposition, malaria, ento-

ecoepidemiological, sub-meter, resolution, grid-stratifiable, forecast, vulnerability, endmember model. Outliers are 

https://en.wikipedia.org/wiki/Statistical_power
https://en.wikipedia.org/wiki/Statistical_significance
https://en.wikipedia.org/wiki/Variance
https://en.wikipedia.org/wiki/F-test
http://www.basic.northwestern.edu/statguidefiles/sg_glos.html#independent
http://www.basic.northwestern.edu/statguidefiles/sg_glos.html#significance level
http://www.basic.northwestern.edu/statguidefiles/sg_glos.html#null hypothesis
http://www.basic.northwestern.edu/statguidefiles/sg_glos.html#null hypothesis
http://www.basic.northwestern.edu/statguidefiles/sg_glos.html#power
http://www.basic.northwestern.edu/statguidefiles/sg_glos.html#independent
http://www.basic.northwestern.edu/statguidefiles/sg_glos.html#correlation
http://www.basic.northwestern.edu/statguidefiles/sg_glos.html#index plot
http://www.basic.northwestern.edu/statguidefiles/sg_glos.html#bias
http://www.basic.northwestern.edu/statguidefiles/sg_glos.html#outliers


International Research Journal of Computer Science and Application                       

Vol. 2, No. 1, March 2018, pp. 1-181                                                                         

  Available Online at http://acascipub.com/Journals.php 
 

 

 

58 

Copyright © acascipub.com, all rights reserved 

anomalous values in the data [2]. Outliers may have a strong influence over the fitted slope and intercept, giving a poor 

fit to the bulk of geosampled, malaria, mosquito, endemic, geo-spectrotemporal, endmember, LULC, signature, sub-

meter resolution, grid-stratifiable, hyperproductive, capture points, for example. Outliers may tend to increase the 

estimate of residual variance in the endmember ento-ecoepidemiological model lowering the chance of rejecting the 

null hypothesis. This may be due to recording errors in the malaria model, which may be correctable, or they may be 

due to the Y values not all being geosampled from the same capture point, geosampled, aquatic, larval, habitat 

population. Apparent outliers may also be due to the Y values being from the same, but non-normal, non-

spectrotemporal, geosampled populations. Outliers may show up clearly in a X-Y scatterplot of the oviposition, 

endmember, signature, orthogonal, optimizable, time series, geosampled, aquatic, larval, habitat, capture point, 

geoclassifiable, LULC data, as ento-ecoepidemiological, hyperproductive, seasonal, eco-georeferenceable, aquatic, 

larval, habitat, capture points that do not lie near the general linear trend of the data. A seasonal, ento-

ecoepidemiological, explanatory, eco-georeferenecable, predictor variable may be an unusual value in either X or Y 

without necessarily being an outlier in the scatterplot. Once the regression line has been fitted, the boxplot and normal 

probability plot (i.e., normal Q-Q plot) for regressed residuals may suggest the presence of outliers in  an ento-

ecoepidemiological, forecast, vulnerability, malaria, mosquito, geo-spatiotemporal, sub-meter resolution, ento-

ecoepidemiological,  eco-endmember, LULC empirical, grid-stratifiable, capture point, oviposition, geosampled 

dataset.  

In statistics, a Q–Q plot ("Q" stands for quantile) is a probability plot, which is a graphical method for 

comparing two probability, endmember,LULC prognosticated, malaria, mosquito,capture point distributions by plotting 

their quantiles against each other. First, the set of intervals for the quantiles have to be chosen. In terms of oviposition, 

geo-spectrotemporal, sub-meter resolution, grid-stratifiable, malaria, mosquito, geosampled parameter estimator, 

endmember, LULC, forecast, vulnerability, regression data analyses, an eco-georeferenceable,  capture point 

(i.e.,seasonal hyperproductive foci) (x, y) on the plot may correspond to one of the quantiles of the second distribution 

(y-coordinate) plotted against the same quantile of the first distribution (x-coordinate). Thus, the line in the forecast, 

vulnerability, oviposition, endmember, LULC model would be a parametric curve with the parameter which may be the 

interval for the quantile when targeting seasonal, hyperproductive foci. Hence, a 95% confidence interval for the q 

quantile can be found by an application of the Binomial distribution whenst conducting a sub-meter resolution, grid-

stratifiable, malaria, mosquito, capture point, seasonal, invasive, orthogonal, eco-georeferenceable, geoclassifiable, 

regressable, ento-ecoepidemiological, LULC, geo-spectrotemporal, endmember, data analyses. 

q-quantiles are values that partition a finite set of values into q subsets of (nearly) equal sizes [2]. There are q − 

1 of the q-quantiles, one for each integer k satisfying 0 < k < q. In some cases the value of a quantile in an endmember, 

oviposition, mosquito, malaria, forcast, vulnerability, signature, grid-stratifiable, sub-meter resolution, probabilistic 

LULC paradigm may not be uniquely determined, as can be the case for the median (2-quantile) of a uniform 

probability distribution on a set of even size. Quantiles can also be applied to continuous endmember LULC 

distributions rendered from an oviposition, eco-georeferenecable, prognosticative, ento-ecoepidemiological, 

forecast,vulnerability model for targeting seasonal, unknown, eco-georferenceable capture point, endmember, 

hyperproductive foci by providing a way to generalize rank statistics to continuous variables. When the cumulative 

distribution function (CDF) of a random geosampled, geo-entoecoepidemiological, endemic, explanatorial,   time 

series, orthogonal LULC variable is known, the q-quantiles may be quantitatable by the application of the quantile 

function (the inverse function of the CDF) to the capture point, geosampled, oviposition sub-meter resolution, grid-

stratifiable, endmember geosampled values {1/q, 2/q, …, (q − 1)/q}[1]. 

 More abstractly given two CDFs F and G, with associated quantile functions F
−1

 and G
−1

 the inverse function 

of the CDF may be the quantile function in an oviposition, malaria, mosquito, LULC endmember, model for targeting 

seasonal, hyperproductive foci. The Q–Q plot generated from an eco-georeferenceable, oviposition, malaria, mosquito, 

capture point, sub-meter resolution, time series would then draw the q-th quantile of F against the q-th quantile of G for 

rendering a range of ento-ecoepidemiological, forecast vulnerability, capture point, orthogonal, LULC, decomposed 

values of q. Thus, the Q–Q plot would be a parametric curve indexed over [0,1] whose immature, geosampled, 

geoclassifable density count values exists in the real plane R
2
 in the oviposition, vulnerability, endmember, grid-

stratifiable, capture point model. 
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In mathematics, parametric equations define a group of quantities as functions of one or more independent 

variables (“parameters) [2] Parametric equations are commonly employed to express the coordinates of points that 

make up a geometric object (e.g., seasonal, eco-georeferenceable, malaria, mosquito, hyperproductive, aquatic, larval, 

habitat,capture point, LULC, endmember  foci) such as a curve or surface, in which case the equations are collectively 

called a parametric representation or parameterization of the object.  Note that parametric representations are generally 

nonunique in sub-meter resolution, malaria, oviposition, mosquito, eco-entomological, grid-stratifiable, empirical, 

orthogonal, forecast, vulnerability, LULC datasets[see1], so the same endmember wavelength frequency quantities 

[e.g., sub-meter resolution visible and near-infra-red (NIR) reflectance, oviposition data), may be expressed by a 

number of different LULC parameterizations. 

In addition to curves and surfaces, parametric equations may describe manifolds and algebraic varieties in a, 

time series, robust, ento-ecoepidemiological,  capture point, oviposition, prognosticative, malaria, mosquito, 

orthogonal, vulnerability, LULC   model of higher dimension, with the number of geosampled aquatic, larval habitat, 

geo-spectrotemporal, parameterizble estimators being equal to the dimension of the manifold or variety, and the number 

of equations being equal to the dimension of the space( i.e, seasonal, oviposition, sub-meter resolution, capture point, 

orthogonal grid). The manifold or variety may be considered for quantitating curves of various dimensions in the 

empirical oviposition dataset which may require  the estimators employed for determining surface,capture point LULC, 

aquatic, larval habitat dimensions. Thereafter, regressively quantitating the empirical,  geo-spectrotemporal, 

geosampled, endmember, LULC dataset of uncoalesced, sub-meter resolution, grid-stratfiable, eco-georeferenceable, 

seasonal, malaria, mosquito, capture point, aquatic, larval habitat, ento-ecogeoreferenecable,ovipoistion dataset.  

 Parametric equations are commonly used in kinematics, where the trajectory of an object is represented by 

equations depending on time as the parameter. Because of this application, a single parameter is often labeled in a 

parametric model, hence, geo-spectrotemporally, eco-georeferenceable, geosampled sub-meter resolution, grid-

stratifiable oviposition, LULC parameters of imaged, seasonal, hyperproductive foci may represent other physical 

quantities (e.g., geometric, malaria ,mosquito, capture point, seasonal endmember, non-continuous, canopied, or soil 

moisture, aquatic, larval habitat variables) or can be selected arbitrarily for convenience. Parameterizations are non-

unique; more than one set of parametric equations can specify the same curve [4]. 

In statistics and in particular in regression analysis, leverage is a measure of how far away the independent 

variable values of an observation are from those of the other observations[6]. High-leverage points in a vulnerability, 

immature habitat, sub-meter resolution, eco-georferenceable, grid-stratifiable, malaria, ento-ecoepidemiological, 

capture point, forecast, regression, LULC, vulnerability model  are those observations, if any, made at extreme or 

outlying values of the independent variables such that the lack of neighboring observations means that the fitted 

regression model will pass close to that particular observation (e.g., eco-georeferenceable, LULC, seasonal,  

hyperproductive, aquatic, larval, habitat foci). Modern computer packages for statistical analysis for uncoalesced, time 

series, endmember, immature, malaria, capture point, mosquito, LULC signature data include, as part of their facilities 

for regression analysis, various quantitative measures for identifying influential observations; amongst these measures 

is partial leverage, a measure of how a variable contributes to the leverage of a datum. 

The method of least squares involves minimizing the sum of the squared vertical distances between each data 

point and the fitted line [2]. Because of this, a fitted line in an oviposition, sub-meter resolution, grid-stratifiable 

signature, malaria, mosquito, ento-eco-epidemiological, endmember,oviposition,  LULC, prognosticative, sub-meter 

rersolution, grid-stratifiable, eco-georferenceable, vulnerability, model can be highly sensitive to outliers. In other 

words, least squares regression may not be resistant to outliers, and thus, neither is the fitted slope estimate in a malaria, 

mosquito predictive, capture point, forecast, vulnerability oviposition, LULC model. A seasonal, eco-georeferenceable, 

capture point vertically removed from the other geo-spectrotemporal, oviposition, geosampled, immature 

habitat,capture points may cause the fitted line to pass close to it, instead of following the general linear trend of the rest 

of the empirical, malaria, endmember data, especially if the capture point is relatively far horizontally from the centroid 

of the data (e.g., the eco-georeferenced capture point represented by the mean of X and the mean of Y). Such malaria, 

mosquito, endmember, oviposition, signature, aquatic, larval, habitat, LULC, capture points are said to have high 

leverage: the centroid acts as a fulcrum, and the fitted line pivots toward high-leverage, capture points (i.e., possible 

prolific, LULC foci), perhaps fitting the main body of the oviposition geosampled data poorly. A sub-meter resolution, 
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eco-georferenceable, orthogonal, grid-stratifiable, hyperproductive, geoclassified, capture point that is extreme in Y but 

lies near the center of the geosampled data horizontally will not have much effect on the fitted slope, but by changing 

the estimate of the mean of Y, it may affect the fitted estimate of the intercept. A nonparametric or other alternative 

regression method may be a better method in such a situation.  

The values in a geosampled, sub-meter resolution, oviposition, grid-stratifiable, endmember, malaria, 

mosquito, signature, regression LULC dataset may indeed be from the same population, but not from a normal one. 

Signs of non-normality in an  ento-ecoepidemiological, geosampled, malaria model are skewness (lack of symmetry) or 

light-tailedness or heavy-tailedness[1]. The boxplot, histogram, and normal probability plot (normal Q-Q plot), along 

with the normality test may provide information on the Gaussianism of  an endmember,  oviposition, malaria, mosquito, 

immature habitat, LULC, prolific, capture point, population distribution. However if there are only a small number of 

eco-georeferenceable, capture points, non-normality can be hard to detect. If there are a great many eco-georeferenced, 

capture points in the empirical, geo-spectrotemporal, geoclassified, eco- endmember, oviposition dataset the normality 

test may detect statistically significant in a ento-ecoepidemiological LULC model  but trivial departures from normality  

may not be detected ( e.g., the t statistic for the test of the slope will converge in probability to the standard normal 

distribution by the law of large numbers).  

 

        In probability theory, the law of large numbers (LLN) is a theorem that describes the result of performing the same 

experiment a large number of times. According to the law, the average of the results obtained from a large number of trials 

should be close to the expected value, and will tend to become closer as more trials are performed. For heuristically extracting 

optimal, oviposition,  sub-meter resolution, grid-stratifiable, time series malaria, mosquito, geo-spectrotemporal, eco-

georeferenceable, geosampled, ento-ecoepidemiological, endmember,LULC  data from a normalized probability plot may 

approximate straight lines, and boxplots may be symmetric (median and mean together, in the middle of the box) with no 

outliers. Except for substantial non-normality that leads to outliers in the X-Y data, if the number of  prognosticated, seasonal, 

hyperproductive, geo-spectrotemporal, LULC, capture points is not too small, then the linear regression statistic will not be 

much affected even if the endmember geosampled population distributions are skewed. Unless the LULC sample sizes are 

small (less than 10), light-tailedness or heavy-tailedness may have little effect on the linear regression [2].  

Statistical tests may operate well across a wide variety of endmember, sub-meter resolution, malarial, 

oviposition, seasonal, capture point, eco-georeferenceable, geosampled, geo-spectrotemporal, aquatic, larval habitat, 

forecasted, normalizable distributions. A test can be robust for validity, meaning that it provides P values close to the 

true ones in the presence of (slight) departures from its assumptions [2]. It may also be robust for efficiency in  an 

optimizable, hierarchical, explanatory, linear, parameter estimation, eco-endmember, time series analyses meaning that 

the residual prognosticative, vulnerability residuals ( e.g., eco-georefereneced, sub-meter resolution, grid-stratified, eco-

geolocations of seasonal, hyperproductive, aquatic, larval, habitat  foci)   maintains its statistical power (e.g., the 

probability that a true violation of the null hypothesis will be detected by the test) in the presence of those departures. 

Linear regression is fairly robust for validity against non-normality in oviposition, sub-meter resolution, grid-

stratifiable, malaria, oviposition, orthogonal or geometric mean regression models, but it may not be the most powerful 

test available for a given non-normal distribution, (e.g., regression test assumptions are not met) when targeting 

seasonal, hyperproductive foci. In the case of violations of assumtpions ( non-normality) in  a optimizable, 

nonparametric, orthogonal, optimization, eigendecomposable, eigenvector, LULC, frequency, diagnostic, regression, 

endmember method, a transformation of X may result in endmember, capture point misspecifications whenst 

quantitating seasonal, hyperproductive, oviposition,  aquatic, larval habitat, eco-georefernceable, sub-meter resolution, 

grid-stratifiable, malaria, mosquito, geoclassified,  LULC, capture point geolocations.  

A nonparametric or resistant regression method, a transformation, a weighted least squares linear regression, or 

a nonlinear,diagnostic, grid-stratifiable, LULC model output may result in a better time series, oviposition, malaria, 

mosquito, forecast, vulnerability, endmember, sub-meter resolution, orthogonal model fit. If the population variance for 

Y is not constant, a weighted least squares linear regression or a transformation of Y may provide a means of fitting a 

regression adjusted for optimally quantitating the inequality of the variances in the forecast, vulnerability, endmember 

model. Often, the impact of an assumption violation on ento-ecoepidemiological malarial, vector, arthropod, endemic, 
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oviposition, endmember, signature, capture point, linear regression results depends on the extent of the violation (e.g., 

how inconstant the variance of Y is, or how skewed the Y geosampled, eco-georeferenceable, sub-meter resolution, 

tabulated, population distribution is) (see Jacob et al [1]). Some small violations may have little practical effect on the 

time series, capture point, oviposition, aquatic, larval habitat, regression grid-stratifiable, signature, vulnerability, 

endmember LULC analysis, whilst other violations may render the gridded linear, prognosticative, malaria, model 

results (e.g., eco-georeferenceable, targeted geolocations of seasonal, endmember, hyperproductive foci) uselessly 

incorrect or uninterpretable. Hence insights yielded from eco-geographical, eco-georferenceable, time series, 

vulnerability endmember forecasts, (e,g., geostatistically targeted, ento-ecoepidemiological, hyperproductive, capture 

points) rendered from  an endemic, transmission-oriented LULC, endmember, signature model confidence intervals 

may be biased. 

  Asymptotic theories for test statistics in linear, seasonal, vector arthropod-related, optimally semi-

parameterizable, malaria-oriented, time series,  sub-meter resolution, grid-stratifiable, geoclassifiable, LULC, panel 

models may be utilized to determine robustness to heteroskedasticity and other probabilistic, residual, diagnostic non-

normalities in multiple, vulnerability, algorithmic, (e.g., an eigenfunction spatial filter eigendecomposition)  model 

outputs. In so doing, optimal targeting of eco-georefernceable, seasonal, hyperproductive, capture point, malaria, 

mosquito, endmember foci may be conducted. A medical entomologist or a malarialogist may consider a standard 

mathematical, geo-spectrotemporally, quantizable, regressively optimizable, fixed-effects, diagnostic, oviposition,  

ento-ecoepidemiological, endmember, orthogonal, LULC  geoclassified, panel model given by equation 

it=xit′β+ai+uit,i=1,2,…,nt=1,2,…,T (1.1) in PROC PANEL where yityit, ai and uit maye be plausible  scalars and xit 

and β are k×1 vectors. These data may be autoregressed in an empirical regressively, optimizable uncoalesced 

endmember dataset of geo-spectrotemporal, geosampled malaria, mosquito, aquatic, larval habitat parsitological, 

hyperrpoductive,  capture point, oviposition, eigendecomposition, autocorrelation model. Often time period fixed-

effects are included in regresseable, malaria, mosquito, immature, habitat estimates which could render the predictive 

risk model equation yit=xit′β+ai+ft+uit as in Jacob et al. [5]. 

        The model statement in PROC PANEL may be specified like the MODEL statement in other SAS regression 

procedures: the dependent variable (e.g., uncoalesced, sub-meter resolution, wavelength, frequency-oriented, seasonal, 

malaria, mosquito, oviposition, LULC, grid-stratifiable, eco-georeferenceable, iteratively, interpolatable, grid-

stratifiable, endmember signature) may be  listed first, followed by an equal sign, followed by the list of regressor 

variables, as shown in the following statements: 

proc panel data=a; 

      id state date; 

     malaria model y = x1 x2; 

   run; 

The major advantage of employing PROC PANEL is that   a malariologist, medical entomologist or other 

experimenter may incorporate an endmember, grid-stratifiable, oviposition, orthogonal, LULC   signature, aquatic, 

larval habitat, seasonal, eco-georeferenceable, capture point, geo-spectrotemporal, model estimators  for determining 

the structure of the random errors. It is important to consider what kind of probabilistic, geoclassifiable, error structure 

model is appropriate whenst regressing malaria, oviposition, geo-spectrotemporal, geosampled, capture point, endemic, 

LULC data[1]. The error structure options supported by the PANEL procedure are FIXONE, FIXONETIME, 

FIXTWO, RANONE, RANTWO, PARKS, DASILVA, GMM and ITGMM (iterated GMM)( http://support.sas.com/). 

Jacob et al. [5] fit a Fuller-Battese one-way random-effects, oviposition, endmember, malaria, capture point, moderate 

resolution (5m spatial resoln), grid-stratified LULC model of immature habitats of malaria mosquito vector Anopheles 

gambiae s.l., in two urban towns (Malindi and Kisumu) in Kenya. The asymptotic distribution of the F-statistic in the 

models were derived as the number of grid-stratfiable, LULC, categorical or continuous, explanatory, time series, 

diagnostic, clinical, field–operational, and remote-specified, endemic, seasonal, hyperproductive, capture point, aquatic 

larval, habitat covariates. The result was used to establish an approximate test for the significance of the random effect 

variance component in both urban, ento-ecoepidemiological, eco-endmember, forecast, vulnerability, An. gambiae s.l. 

oviposition, capture point models. Robustness of the established approximate test was regressively quantitated and the 
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asymptotic distribution of the F-statistic for the LULC, random-effects models with p unknown parameters under an 

arbitrary design matrix of rank p. Here the number of endmember, explicative, observations, ni was the number of 

observations from  the ith group and t was the number of  habitat groups. 

Jacob et al. [5] tackled two different assumptions on the ni’s where the ni’s were assumed to be either fixed or 

large which provided robustness of the asymptotic distribution of the F-statistic in the LULC, oviposition, endmember, 

malaria, mosquito, ento-ecoepidemiological, aquatic, larval, habitat, endmember models. The ni’s are only assumed to 

be fixed and robustness of the asymptotic distribution of the F-statistics are not commonly given [2]. Two different 

assumptions on the ni’s led to the same asymptotic results since the asymptotic distribution of the F-statistic was unique 

in both oviposition, ento-ecoepidemiological, eco-endmember, grid-stratified, risk model, orthogonally parameterizable, 

geo-spectrotemporal, signature datasets.  The authors considered the analysis of variance (ANOVA) type design matrix. 

They used the technique where the asymptotic distribution of the F-statistic was reduced to the asymptotic distribution 

of the difference   mean square error (MSE) in the models. The MSE converged in probability to the constant in the 

vulnerability forecasts. 

A malariaologist, medical entomologist or other experimenter may consider the asymptotic behavior of the 

one-way analysis of variance (ANOVA) F statistic whenst the number of levels or endmember, LULC groups of grid-

stratifiable, seasonal, endmember, eco-georeferenceable, hyperproductive capture point foci is large in an signature, 

sub-meter resolution, prognosticative, oviposition model. The results obtained may be under the assumption of 

homoscedasticity and in such circumstances the sample or group sizes ni may remain fixed as the number of groups 

tends to infinity. It may be imperative to study both weighted and unweighted test statistics in the heteroscedastic case 

whenst constructing an oviposition, malaria, LULC, endmember, sub-meter resolution, signature, capture point, aquatic, 

larval habitat, ento-ecoepidemiological prognosticative, vulnerability model. The unweighted statistic may be    

employable even with small group size oviposition, endmember signature, eco-georeferenecable, capture point, 

empirical datasets. It may be demonstrated that an asymptotic approximation to the distribution of the weighted statistic 

in these models is possible only if the group sizes tend to infinity suitably. An investigation may reveal local, aquatic, 

larval habitat, hyperproductivegeoclassifiable, optimizable,  endmember signature, seasonal, geo-spectrotemporal, ento-

ecoepidemiological, geosampled, aquatic, larval habitat, data alternatives for constant regression in the case of 

replicated, seasonal,  hyperproductive, eco-georeferenceable, LULC observations and the case of no replications, which 

may require smoothing techniques. 

  The asymptotic theory may employ a novel application of the projection principle which may regressively 

quantitate the asymptotic distribution of endmember, LULC, quadratic forms in an oviposition, sub-meter resolution, 

grid-stratifiable, malaria, mosquito, signature, forecast, vulnerability, geo-spectrotemporal, optimizable, aquatic, larval 

habitat, hyperproductive, eco-georeferenceable model. It is interesting that the asymptotic distribution of the F-statistic 

for the random effects model under an arbitrary design matrix X has never been considered for optimally regressively 

quantitating uncoalesced, malaria, mosquito, oviposition, LULC endmembers. The model under an arbitrary design 

matrix X may reduce to the one-way random-effects model or the split plot design with appropriate design matrix for 

parsimoniously predicting eco-georeferenceable, seasonal, hyperproductive, capture point, aquatic, larval habitat, 

endemic foci, geolocation, endmember  explanators  precisely. The results presented may be applicable for the 

asymptotic distribution of F-statistic to all types of seasonal malaria, mosquito, aquatic, larval habitat, capture point, 

oviposition, endmember, LULC models, ( e.g., agro-irrigation, urban residential etc.). In so doing, the approximate F-

test for a null variance ratio may be proposed in the presence of non-normality for these models. The proposed test may 

be useful when the assumption of normality for random effect and error of the ento-ecoepidemiological,geosampled, 

seasonal, capture point, aquatic, larval, habitat, malaria, mosquito, geo-spectrotemporal,oviposition model estimators 

which may not coincide with the approximate F-test under normality when a kurtosis of random effect and error are 

taken to be zero. The power of the approximate F-test is based on the violation of the normality assumption [2]. 

In order to aid in endmember, oviposition, ento-ecoepidemiological, forecast, vulnerability, geo-

spectrotemporal, malaria, mosquito, capture point, aquatic, larval habitat, model specification, two specification test 

statistics may be applied. The first is an F statistic that tests the null hypothesis that the fixed-effects, capture point, 

grid-stratifiable, oviposition-related, time series, geosampled, vulnerability parameters are all zero. The second is a 

Hausman m statistic that provides information about the appropriateness of the random-effects endmember 

specification in the aquatic, larval habitat, ento-ecoepidemiological, LULC, geosampled data. The m statistic is based 

on the idea that, under the null hypothesis of no correlation between the effects variables and the regressors, Ordinary 
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Least Square may be consistent. Hence, a test in an oviposition, ento-ecoepidemiological, forecast, vulnerability, eco-

georeferenceable, seasonal, capture point, aquatic, larval, habitat, oviposition, malaria, mosquito, optimizable, 

signature, LULC model can be based on the result that the covariance of an efficient grid-stratfiable, geosampled 

estimator with its difference from an inefficient estimator is zero. Rejection of the null hypothesis may suggest that the 

fixed-effects model is more appropriate in the model. 

In statistics, a fixed effects model is a statistical model in which the model parameters are fixed or non-random 

quantities. This is in contrast to random effects LULC models and mixed endmember models in which all or some of 

the model parameters are considered as random variables. In many applications including endmember, malaria, 

mosquito, capture point, signature, grid-stratifiable, forecast, vulnerability, geosampled, LULC models, a fixed effects 

model refers to a regression model in which the group means are fixed (non-random) as opposed to a random effects 

model in which the group means are a random sample from a seasonal, geo-spectrotemporal, aquatic, larval, habitat 

population. Generally, empirical, oviposition, endmember, malaria mosquito data can be grouped according to several 

observed factors. The group means should be modeled as fixed or random effects for each grouping [6]. In a fixed 

effects LULC, ento-ecoepidemiological, eco-georeferenecable, forecast, vulnerability model each group mean would a 

group-specific fixed quantity. In panel data where longitudinal observations exist for the same subject, fixed effects 

represent the subject-specific means [2]. In geo-spectrotemporal, ento-ecoepidmiological, malaria, mosquito, aquatic, 

larval habitat, eco-georeferenceable, forecast, vulnerability, endmember,  data analysis the term fixed effects  capture 

point, ovipsoition estimator may refer to an estimator for the LULC coefficients in the model including those fixed 

effects (one time-invariant intercept for each seasonal, hyperproductive foci geosampled subject). 

 An OLS procedure may also provide the pseudo- R square measure in an oviposition, endmember, malaria, 

geoclassifiable, mosquito, capture point, endmember grid-stratifiable, sub-meter resolution, LULC, signature model. 

This number would be interpretable as a measure of the proportion of the endmember transformed sum of squares of the 

dependent variable (e.g., eco-georeferenceable, seasonal, aquatic, larval, habitat, density  count) that is attributable to 

the influence of the geosampled, capture point, wavelength, frequency, LULC independent variables. In the case of 

OLS estimation, the R square measure is equivalent to the usual R square measure. Conversely, a more generalizable, 

seasonal, multivariate, vector, arthropod-related, aquatic, larval habitat, malaria, mosquito, endemic, transmission-

oriented, predictive, oviposition, capture point, LULC, risk model might include individual geo-spectrotemporal, 

capture point trends. In so doing, the asymptotic limiting variables may then remain unchanged when additional grid-

stratifiable, endmember, heuristically optimizable, LULC timeseries descriptors are included in the oviposition model, 

however the results may not be applicable to the estimated coefficients (e.g., seasonal, hyperproductive, eco-

georeferenceable,  malaria, mosquito, aquatic, immature, density, count data, geosampled  in an agro-irrigated riceland 

agro-ecosystem) themselves. The focus would instead be on estimtion and inference about β whenst optimally eco-

cartographically, remotely geo-spectrotemporally targeting, hyperproductive, eco-georeferenceable, capture point, 

seasonal ento-ecoepidemiological, vulnerability foci. According to Gu and Novak (2005) oviposition, malaria, 

mosquito, seasonal, eco-georeferenceable, immature, prolific LULC sites should be field   prioritized for  optimally 

determining geolocations of   clustering, prolific, seasonal, immature habitat, capture points for implementing control 

strategies [e.g., Integrated Vector Management(IVM)]. 

For instance, consider the fixed-effects OLS estimator of β as rendered by a time series, progressive, field-

operationizable, sub-meter resolution, evidentially probabilistic, malaria, mosquito, capture point, LULC, seasonal, 

hyperproductive foci, model, forecast equation  where β̂ is equal to  (∑i=1n∑t=1Tx˜itx˜it′)−1∑i=1n∑t=1Tx˜ity˜. In such 

circumstances the optimizable, geosampled, geo-spectrotemporal, malaria, oviposition, grid-stratifiable, capture point, 

regression variable i y˜it=yit−y¯i,x˜it=xit−x¯i, may be y¯i=T−1∑t=1Tyit and x¯i=T−1∑t=1Txit. In a seasonal, vector, 

arthropod-related, endmember, risk model this equation could render explicative, time series, robust  forecasts of 

seasonal hyperproductive, capture point, aquatic, larval habitat, eco-georeferenecable foci employing  

y˜it=yit−yi−1n∑j=1n(yjt−yj),x˜it=xit−xi−1n∑j=1n(xjt−xj). Plugging in the diagnostic, residual ento-

ecoepidemiological, time series, explanatorial, vulnerability forecasts   ˜would then subsequently optimally render 

β̂−β=(∑i=1n∑t=1Tx˜itx˜it′)−1∑i=1n∑t=1Tx˜ituit.  If a medical entomologist or malarialogist then lets v˜it=x˜ituit and 

defines v̂it=x˜itûit in the LULC model where ûit are the OLS residuals is given by ûit=y˜it−x˜it′β̂, the partial sums of v̂it 

as Ŝi[rT]=∑t=1[rT]v̂it could be optimally  definable in the endemic, endmember, probabilistic, parasitological,  ento-

ecoepidemiological, risk model, residual derivatives for eco-geographically targeting hypeproductive foci seasonally  

whenst r∈(0,1]. In such circumstances rT would be the integer part of the residual eco-georeferenceable, vulnerability 
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forecasts (e.g., targeted, eco-georeferenceable, hyperproductive, Anopheles, seasonal, capture point, aquatic, larval 

habitats). The sample variance–covariance matrix could then be employable to obtain the standard errors in the 

prognosticative, endmember, oviposition, signature,LULC model which could take the sandwich form 

T(∑i=1n∑t=1Tx˜itx˜it′)−1(∑i=1nT−1ŜiTŜiT′)(∑i=1n∑t=1Tx˜itx˜it′)−1.  

 

In employing a sandwich estimator, a malarialogist or medical entomologist could show that the middle term  

in an oviposition, ento-ecoepidemiological, forecast, vulnerability, malaria, mosquito, LULC  model is a special case of 

a more generalizable class of an empirical, optimizable, uncoalesced dataset of prognosticative, seasonal, vector, 

arthropod-related, evidentially probabilistic, variance–covariance, diagonal, eigenfunction, orthogonally eigen-

decomposable, sub-meter resolution, covariance matrix estimators.Henceforth, by letting Γj(i)=T−1∑t=j+1Tv̂itv̂it−j′for 

defining the residual, diagnostic, explanative,  vulnerability, hyperproductive, capture point, regressively optimizable 

endmember, orthogonal, optimizabe, vulnerability forecasts by Ω̂i=Γ̂0(i)+∑j=1T−1k(jM)(Γ̂j(i)+Γĵ(i)′), the explicative, 

nonparametric kernel heteroskedasticity and autocorrelation consistent (HAC) covariance matrix estimator for cross-

sectional individual grid-stratifiable, eco-georefereneced geosampled, immature habitats in a sample frame may 

optimally quantitate propagational geo-spectrotemporal, probabilistic uncertainties  employing  the kernel, k(x), and 

bandwidth M.  

 

An equivalent expression for Ω̂ may also be provided also by Ω̂i=T−1∑t=1T∑s=1TKtsv̂itv̂is′. In so doing, 

Kts=k(|t−s|M) may unbiasedly render iteratively, interpolative, seasonal, eco-entomological, time series, optimizable, 

vector, arthropod-related,  optimally regressively, robustifiable, capture point, parameterizable, dataset of endmember, 

sub-meter resolution, grid-stratified LULC covariate coefficients. For example, if a medical entomologist or 

malarialogist considers the time series sample, regression-based,  variance–covariance matrix 

V̂ave(n)=T(∑i=1n∑t=1Tx˜itx˜it′)−1(∑i=1nΩ̂i)(∑i=1n∑t=1Tx˜itx˜it′)−1is parsimoniously employed for   constructing a 

multivariate, expositiorial, prognosticative seasonal, vector, arthropod-related, malaria,mosquito, eco-entomological, 

endmember, oviposition, eco-georeferenceable, LULC, risk model, the  subscript, ave(n) may indicate the “average” of 

the n individual-by-individual geo-spectrotemporally geosampled, hyperproductive, capture point foci. Hence 

endmember HAC estimators could be employable to construct the middle matrix of the sandwich in a malaria, 

mosquito, oviposition, forecast, vulnerability model.  

 

For the case where k(x)=1k(x)=1 for |x|≤1|x|≤1 and k(x)=0 [i.e. k(x)k(x)],  an ento-ecoepidemiological dataset 

of  oviposition, seasonal, time series, diagnostic, vulnerability, hyperproductive, capture point, malaria, mosquito, 

oviposition, endmember, eco-georeferenecable, vulnerability forecasts may be the truncated kernel, which  could 

robustly  reveal if M=TM=T, Ω̂i=T−1ŜiTŜiT  exists in the residual, diagnostic, model output. In such 

circumstances, the variance-covariance estimator for the traditional standard errors can be easily provided for the 

endemic, transmission-oriented, oviposition, goclassifiable   forecast, vulnerability, endemic, seasonal, 

hyperproductive, remotely sensed, grid-stratifiable, LULC model and their geostatistical, eco-georeferenceable,  ento-

ecoepidemiological, geosampled,  capture point, endmember, sub-meter resolution, parameterizable estimators. The 

traditional standard errors are a special case of “cross-section averages of HACs” standard errors [2].  

Jacob et al. [6] studied properties of the truncated kernel function γ
2
 in an ento-ecoepidemiological, grid-

stratified, eco-georeferenceable, malarial,oviposition, capture point, forecast, vulnerability, geo-spectrotemporal, sub-

meter resolution, remotely sensed, geostatistical, endmember,LULC  model  defined on  integers n ≥ 0 by γ(n)/P(n), 

where γ(n) = ∏ p|n p where the w kernel function and P(n) was the largest empirical, time series,  aquatic, larval 

habitat, unbiased, parameter estimator in an eco-georeferenceable, temporally geosampled dataset in Uganda. In 

particular, the authors proved that the maximal order of γ
2
(n) for n ≤ x is (1 + o(1))x/log x as x → ∞ and that ∑ n≤x 

1/γ2(n) = (1 + o(1))ηx/log x, where η = ζ(2)ζ(3)/ζ(6) for any oviposition, endmember, optimizable, sub-meter 

resolution,  geo-spectrotemporal, signature, malaria, mosquito, geosampled dataset at the ento-ecoepidemiological 

study site. The authors further show that, given any geosampled, oviposition, malaria, grid-stratified, parameterizable, 

optimizable, aquatic, larval habitat, capture point, endmember,LULC estimator u < 1, limx→ ∞ 1 x #{n ≤ x: γ2(n) < 

xu} = limx→ ∞ 1 x #{n ≤ x: n/P(n) < xu} = 1 − ρ(1/(1 − u)), whenst ρ is the Dickman function. The probability that a 

random integer between 1 and  will have its greatest prime factor  approach a limiting value  as , 

http://mathworld.wolfram.com/GreatestPrimeFactor.html
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whenst  for  and  is defined through the integral 

equation for  (Dickman 1930,). 

 Jacob et al. [1] employed the orthogonal  function analytically  in a time series,  malaria, oviposition, remote 

sensing, capture point, forecast, vulnerability, geo-spectrotemporal, LULC model for 

  by = [2]. The authors  show that n/P(n) can very often be 

much larger than γ2(n) in these oviposition models namely by proving that, given any c ∈ [1, ξ), where ξ is the unique 

solution to ξ log 2 = log(1 + ξ) + ξ log(1 + 1/ξ), then #{n ≤ x: γ2(n) ≥ n/(c log n)} = o (#{n ≤ x: n/P(n) ≥ n/(c log n)}) (x 

→ ∞).  In particular, the authors revealed that the maximal order in the paradigm of γ2 (n) for n ≤ x was (1 + o(1))x/log 

x as x → ∞ such that ∑ n≤x 1/γ2(n) = (1 + o(1))ηx/log x, whenst η = ζ(2)/ζ(n)  

The geostatistical properties of test statistics optimally constructed employing traditional clustered standard 

errors are well developed in the literature beginning with Arellano [1987]. A paper by Hansen [2004] provides a 

thorough analysis that extends the traditional fixed-T, large-n results to include large-T, large-n results and large-T, 

fixed-n results. Unfortunately, Hansen [2006] did not provide results for the case where time period dummies are 

included (e.g., PROG REG). A key assumption in showing that the traditional time series, positively autocorrelated, 

orthogonally  clustered, standard errors are valid in optimizable, sub-meter resolution, grid-stratifiable, endemic, 

malaria, oviposition, mosquito, aquatic, larval habitat dataset is that the vulnerability forecast regressors and the error 

terms are independent across  the neighbourhood [see 2]. This assumption rules out the possibility of correlation across 

predictive, seasonal, vector, arthropod-related,   endemic, oviposition, optimally parameterizable, empiricial 

geosampled, capture point, covariate coefficients [i.e. spatial autocorrelation in the cross-section is not quantitable]. 

Whenst there is spatial correlation in the cross-section, traditional, clustered, geo-spatiotemporal, ecto-

entoepidemiological, empirical datset, standard errors derived are no longer valid[2]. 

As shown by Driscoll and Kraay  [1988]  it is possible however to obtain standard errors in a panel, seasonal, 

multivariate, predictive, risk model that are robust to general forms of spatial correlation in the cross-section. These 

standard errors would retain robustness to heteroskedasticity and serial correlation in the diagnostic residual plots ( e.g., 

Q-Q) in a vulnerability, prognosticative, endemic, forecast-oriented, malaria oviposition, endmember, geoclassifiable, 

sub-meter resolution, grid-stratifiable,orthogonal, LULC model though the serial correlation  would be weakly time 

series dependent. For instance, by stacking the k×1 vectors v̂1t,v̂2t,…,v̂nt into an nk×1vector v̂t 

with transpose v̂t′=[v̂1t′,v̂2t′,…,v̂nt′],  a medical entomologist or malarialogist could 

theoretically  define v¯̂t=∑i=1nv̂it in an ent-eco-epidemiological, evidential, probabilistic, malarial, 

immature habitat, oviposition, prognosticative, capture point, ento-ecoepidemiological, sub-meter resolution, grid-

stratifiable, geo-spectrotemporal, geosampled, risk model.  Note that vt would be n times the cross-section average of 

v̂it in the oviposition model. For instance, suppose a medical entomologist malarialogist or other experimenter 

computes a HAC estimator for a prognosticative, qualitatively optimizable,  regression-related, vulnerability, malaria, 

mosquito LULC, endmember  model employing the  vt as 

follows:equation Ω=Γ0+∑j=1T−1k(jM)(Γ¯ĵ+Γ¯ĵ′),Γ¯̂j=T

−1∑t=j+1Tv¯̂tv¯̂t−j′.An equivalent expression for Ω¯̂ could then be given by 

Ω¯̂=T−1∑t=1T∑s=1TKtsv¯̂tv¯̂s′,where Kts may be  definable as Ω¯̂ which may be  

employable for regressively quantitating the middle term of any, geosampled, ento-ecoepidemiological, dependent, 

regressively optimizable, endmember, estimatator,variance–covariance matrix whenst 

V̂HACSC=T(∑i=1n∑t=1Tx˜itx˜it′)−1Ω¯̂(∑i=1n∑t=1Tx˜itx˜it′)−1. Notice that V̂HACSC and V̂ave(n) are very similar 

except that V̂HACSC uses the “HAC of the cross-section averages” whereas V̂ave(n) employs “cross-section averages 

of HACs. 

http://mathworld.wolfram.com/IntegralEquation.html
http://mathworld.wolfram.com/IntegralEquation.html
http://www.sciencedirect.com/science/article/pii/S0304407611002326#br000015
http://www.sciencedirect.com/science/article/pii/S0304407611002326#br000070
http://www.sciencedirect.com/science/article/pii/S0304407611002326#br000070
http://www.sciencedirect.com/science/article/pii/S0304407611002326#br000050


International Research Journal of Computer Science and Application                       

Vol. 2, No. 1, March 2018, pp. 1-181                                                                         

  Available Online at http://acascipub.com/Journals.php 
 

 

 

66 

Copyright © acascipub.com, all rights reserved 

 Note that putting full weight on all the sample geoclassified,  LULC autocovariances in an oviposition, geo-

spectrotemporal, geosampled,  malaria, ento-eco-epidemiological, forecast vulnerability, capture point, model 

regression framework is not an option in practice for Ω¯̂ as Ω¯̂=Γ¯̂0+∑j=1T−1(Γ¯ĵ+Γ¯ĵ′)=T−1S¯T̂S¯T̂=0,employing  

S¯̂T=∑t=1Tv¯̂t=∑t=1T∑i=1nv̂it=∑t=1T∑i=1nx˜itûit=0. Placing full weight on the aquatic, larval habitat, endmember, 

LULC sample autocovariances could however render an endemic, vulnerability, parasitological, parametric estimator 

that is identically zero for any seasonal, geo-spectrotemporal, geosampled, vector, arthropod-related, empirical, malaria, 

mosquito, capture point, field-operational, clinical, or remote geosampled, ento-ecoepidemiological, endmember sub-

meter resolution, grid-stratifiable, optimizable dataset.  

An interesting twist on kernel HAC estimators that are special cases of V̂ave(n) and V̂HACSC  is BCH. BCH 

can consider covariance matrix estimators in generalizable situations where an empirical, optimizable, ento-

ecoepidemiological, geospectrotemporal geosampled, malarial, mosquito, oviposition sub-meter resolution, grid-

stratfiiable, empirical, capture point,  endmember dataset can be divided into clusters that are asymptotically 

independent. In so doing, for a given time dimension, the seasonal, geosampled, malaria, mosquito,  vector, arthropod-

related, probabilistically regressable, ento-eco-epidemiological, empirical datasets can be optimally analyzed  by 

dividing  the time dimension into contiguous (i.e., non-overlapping), non-exhaustive groups (e.g., time-related, 

diagnostic, geo-spectrotemporally prioritized clusters) corresponding to 

timeperiods{1,…,[λ1T]}{1,…,[λ1T]},{[λ1T]+1,…,[λ2T]},…,{[λG−1T]+1,…,T}{[λ1T]+1,…,[λ2T]},…,{[λG−1T]+1,

…,T} where 0<λ1<λ2<⋯<λG−1<10<λ1<λ2<⋯<λG−1<1, for example.  Hence setting λ0=0 and λG=1could optimally 

render geostatistically significant, explanatory, sub-meter resolution, grid-stratifiable,   capture point, oviposition, 

covariate coefficients in regressable residual, forecast, vulnerability, malaria mosquito, grid-stratifiable, dataset. Also by 

letting  Kts=1, the  time periods t and s would be geolocated in the same seasonal, geosampled,  time period, 

autocorrelated  cluster and Kts=0 which would lead to the BCH–HAC oviposition, 

estimators[i.e.,Ω̂iBCH=T−1∑t=1T∑s=1TKtsv̂itv̂is′=T−1∑g=1G[(∑t=[λg−1T]+1[λgT]v̂it)(∑t=[λg−1T]+1[λgT]v̂it′)].Th

ese probabilistic, endmember, residual, prognosticative, oviposition, malaria model, parameterizable, aquatic, larval, 

habitat estimators can thereafter be viewed as a generalization of the variance-covariance matrix estimator of a 

forecasting,  multivariate, vector, arthropod-related, eco-entomological,  endemic transmission, parasitological, risk 

model. 

Alternatively, it may be possible to obtain standard errors in a panel, seasonal, vector, arthropod-related, ento-

ecoepidemiological, forecast, vulnerability, endemic, malarial,  mosquito, sub-meter resolution, grid-stratfiiable, 

endmember, risk model that are robust to general forms of spatial correlation in the cross-section. For example, by 

stacking the k× 1 vectors v̂1t,v̂2t,…,v̂nt into an nk× 1 vector v̂t with transpose v̂t′=[v̂1t′,v̂2t′,…,v̂nt′], a seasonal, 

multivariate, vector, arthropod-related, ento-ecoepidemiological,  predictive, sub-meter resolution, grid-stratifiable, geo-

spectrotemporal, geosampled, ovipositon, risk model may  define v¯̂t=∑i=1nv̂it which can then  render 

v¯̂t  n times  the  cross-section average of v̂it. Suppose the medical entomologist or malarialogist computes a 

diagnostic, HAC estimator[i.e., v¯̂t] I  an oviposition model as follows: 

Ω¯̂=Γ¯̂0+∑j=1T−1k(jM)(Γ¯ĵ+Γ¯̂j′),Γ¯ĵ=T−1∑t=j+1Tv¯̂tv¯̂t−j′(1.1). An equivalent robust expression for Ω¯ ̂ could 

then be also given by Ω¯̂=T−1∑t=1T∑s=1TKtsv¯̂tv¯̂s′,  where Kts is defineable by equation (1.1). In so doing, Ω¯ ̂

could be usable as the middle term of the estimate variance–covariance matrix, for optimally regressively deriving the 

predictive, LULC, optimizable,  equation V̂HACSC=T(∑i=1n∑t  where tx˜it′)−1Ω¯̂(∑i=1n∑t=1Tx˜itx˜it′)−1 may 

geolocate an unknown, un-geosampled, eco-georeferenceable,  hyperproductive, LULC, capture point,  

seasonal,aquatic, larval habitat foci. Notice that V̂HACSC and V̂ave(n) are very similar except that V̂HACSC uses the 

“HAC of the cross-section averages” while V̂ave(n) uses “cross-section averages of HACs”.  

  

Unfortunately putting full weight on all the sample autocovariances would then be not an option in practice for 

Ω¯̂ in the malaria, oviposition, forecast, endmember, vulnerability, LULC  model as then Ω¯̂=Γ¯̂0+∑j=1T−1 (Γ¯ĵ+Γ¯ĵ′) 

=T−1S¯T̂S¯T̂′=0, whenst S¯̂T=∑t=1Tv¯̂t=∑t=1T∑i=1nv̂it=∑t=1T∑i=1nx˜itûit=0.  Fortunately, placing full weight on 

the sample autocovariances gives an estimator that is identically zero for any uncertainty dataset. 

 

Currently, two classes of standard errors have been thoroughly analyzed in ento-ecoepidemiological, 

oviposition, malaria, mosquito, capture point, endemic, endmember, forecast, vulnerability modelling in literature for 

http://www.sciencedirect.com/science/article/pii/S0304407611002326#fd000065
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testing non-normality in multivariate, seasonal, transmission-oriented, ento-ecoepidemiological, signature, LULC, risk 

analyses. Both are based on HAC covariance matrix estimators. The first class is based on averages of HAC estimators 

across individual, seasonal, geo-spectrotemporal, geosampled, multivariate, vector, arthropod-related, explanatory, 

endemic transmission-oriented, geosampled, eco-georeferenceable, aquatic larval,  sub-meter resolution, grid-

stratfiiable, prognosticative, endmember variables employing the averages of HACs. This class also includes various 

well known cluster standard errors. The second class is based on the HAC of cross-section averages as proposed. 

Unfortunately, the”HAC of averages” standard errors are non-robust whenst there exists heteroskedasticity and 

multicollinearity; thus, they are weak dependent in the time dimension.  

 

Conversely, a fixed-b asymptotic malaria, endmember, oviposition, forecast, vulnerability, sub-meter 

resolution, grid-stratifiable, signature, capture point, aquatic, larval, habitat, LULC model based on both classes of 

standard errors in seasonal, multivariate, ento-ecoepidemiological, vector, arthropod,capture point, eco-georferenceable 

models with individual time fixed-effects dummy variables may be employable for targeting hypeproductive, seasonal, 

sub-mter resolution, oviposition foci.  The presence of heteroskedastic or autocorrelated ovispoition, variables in a ento-

ecoepidemiological, forecast, vulnerability, endemic, signature, frequency  model  may not be conspicuous. The 

covariance matrix of the geo-spectrotemporal geosampled, oviposition, parameterizable, orthogonal, LULC, 

endmember estimator of an endemic, seasonal, malaria model may be estimated employing a non-paramteric kernel 

method that involves a lag truncation parameter. Depending on whether this lag truncated parameter is specified, will 

then determine growth rate which will also be dependent on sample size of the parameterizable covariate, endmember 

dataset. Two types of asymptotic approximations: the small asymptotics and the fixed-b asymptotics. Employing 

techniques for quantitating the probabilioty distribution rendered from the oviposiiton, ento-ecoepidemiological, 

endmember, signature, LULC eco-georeferenceable, geo-spectrotemporal model may determine higher order of 

expansion in the geosampled, malaria, capture point, model, foci, explanatory estimators. It may be shown that a fixed b 

asymptotic approximation provides a more robust order of refinement than a first order small-b asymptotics whenst 

optimally interpreting a geosampled oviposition, endmember, optimizable dataset for determining seasonal 

hypeporductive foci. This result may provide a justification to utize the fixed b asymptotic approximation in empirical 

applications whenst mapping prolific, ento-ecoepidemiological, capture point,aquatic, larval habitats.  

 

The asymptotics can then be carried out for time sample empirical, geosampled, capture point datasets 

employing both fixed and large cross-sectional sample sizes. Extensive simulations may reveal that the fixed-b 

approximation is also  much better than the traditional normal or chi-square approximation especially for the Driscoll–

Kraay standard errors whenst contructing a robust, endemic, transmission-oriented, vector, arthropod-related, ento-

ecoepidemiological, sub-meter resolution, grid-stratifiable, geospectrotemporal, endmember, risk model. Further, the 

use of fixed-b  critical values could lead to more reliable inferences in the endemic, transmission-oriented, oviposition, 

risk model construction practice especially for tests of joint hypotheses. Although “averages of HACs” standard errors 

are robust to heteroskedasticity including the nonstationary unfortunately, they are not valid in the presence of spatial 

autocorrelation. 

 

Spatial autocorrelation measures the correlation of a variable with itself through geographic space [2]. Thus, if  

a medical entomologist or malarialogist,  lets be a periodic sequence, then the autocorrelation of the sequence 

would be  the sequence  where denotes the complex conjugate and the final subscript is understood to 

be taken modulo . Similarly, for a periodic array with and , the autocorrelation, capture 

point, aquatic, larval habitat, endmember, sub-meter resolution, grid-stratifiable, coefficients in a time series, vector 

arthropod-related, endemic, transmission-oriented,predictive,  vulnerability, multivariate, malaria, grid-stratfiiable, 

seasonal, oviposition, sub-meter resolution, prioritization,LULC  model  could be quantitated employing a 

-dimensional matrix given by where the final subscripts are understood to be 

taken modulo and , respectively. By definition, the complex conjugate satisfies [3]. The conjugate is 

distributive under complex addition, 

http://mathworld.wolfram.com/PeriodicSequence.html
http://mathworld.wolfram.com/ComplexConjugate.html
http://mathworld.wolfram.com/Distributive.html
http://mathworld.wolfram.com/ComplexAddition.html
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since = = =  and 

 . Further,   may be a distributive over complex multiplication scheme in an 

orthogonal,  multivariate, seasonal, prognosticative, vector arthropod-related, endemic, transmission oriented, eco-

epidemiological, vulnerability,geo-spectrotemporal, endemic, model since 

== = For a complex 

function , the eigenfunction autocorrelation coefficients in an empirical orthogonally eigendecomposed endmember 

datasets of   ento-ecoepidemiological, time series, residual,LULC, vulnerability forecasts would then be defineable by 

= where denote cross-correlation and is the complex conjugate. Note that the notation 

is sometimes used for and that the quantity is sometimes known as 

the autocorrelation of a continuous real function [3].  

 

Thus, if we let X be some repeatable process (e.g.,  measured, aquatic, larval habitat, oviposition, density, 

count value), and i be some point in time after the start of that process in a seasonal, predictive, multivariate,  vector, 

arthropod related, malarial,  endemic, transmission-oriented, regression-based, LULC, predictive, risk model, i may be 

an integer for a discrete-time process, or a geo-spectrotemporally geosampled, explanatory, endemic, transmission-

oriented, parameterizable, endmember, covariate, coefficient value for a continuous-time process. Then Xi would be the 

value or realization optimally rendered by a given run of the process at time i. For example, suppose that the endemic, 

vector, arthropod-related, endemic, disease transmission is known to have well-defined field and remote geo-

spectrotemporally geosampled, explanatory, oviposition, sub-meter resolution, grid-stratifiable,  

geosampled,endmember, LULC, covariate, coefficient value for mean μi and variance σi
2
 for all seasonal sample times i. 

Then the definition of the autocorrelation in a robustifiable, vector arthropod-related, seasonal, predictive, risk model 

between times s and t would be denotable employing where "E" is the expected 

value operator. Note that this expression would not be well-defined for all time series or processes in the predictive, 

seasonal, multivariate, vector, arthropod-related, eco-epidemiological, oviposition, risk, LULC model, ento-

epidemiological, residual forecasts (e.g.,geolocations of eco-georferenecable, seasonal hyperproductive foci)  as the 

variance may be zero especially for a constant process.  

Theoretically, if the function R is well-defined in an oviposition,  predictive, grid-stratifiable, seasonal, 

multivariate, vector, arthropod-related, endemic, transmission oriented,  malaria, LULC, endmember, sub-meter 

resolution, risk model, its value must lie in the range [−1, 1], with 1 indicating perfect correlation and −1 indicating 

perfect anti-correlation.  

Additionally, if Xt is a second-order stationary process then the mean μ and the variance σ
2
 are time-

independent, and the autocorrelation in the expositorial, eco-epidemiological, residual, forecast \-oriented,  vector, 

arthropod-related, explanatory, observational, endmember, parasitological, malaria, mosquito, aquatic, larval, habitat 

endmember LULC, predictors would depend only on the lag between t and s. Further, in the ento-ecoepidemiological, 

sub-mter reoslution, grid-stratfiied, vulnerability forecasts (seasonal, prolific, eco-georeferenceable foci), the correlation 

would depend only on the time-distance values (e.g. prevalence rates, geosampled, aquatic, larval habitat, frequency, 

wavelength, count indicators) but, not on their position in time. This implies that the autocorrelation in a predictive, 

multivariate, seasonal, malaria, endemic, transmission-oriented, optimizable, eco-entomological, endmember, 

geoclassifiable, LULC eco-georeferenecable, oviposition, risk model may be expressed as a function of the time-lag. In 

so doing, the diagnostic, endmember   forecasts ( e.g., targeted, hyperproductive, immature, seasonal, capture point, 

autocorrelated, grid-stratified, quantitable, orthogonal  geo-spectrotemporal eco-georeferenceable, cluster)   would 

render an even function of the lag τ = s − t. This would provide the form .  

Fortunately, the fact that this is an even function can be stated as  in the forecasts targeting the 

http://mathworld.wolfram.com/Distributive.html
http://mathworld.wolfram.com/ComplexMultiplication.html
http://mathworld.wolfram.com/Cross-Correlation.html
http://mathworld.wolfram.com/ComplexConjugate.html
http://en.wikipedia.org/wiki/Integer
http://en.wikipedia.org/wiki/Discrete-time
http://en.wikipedia.org/wiki/Continuous-time
http://en.wikipedia.org/wiki/Realization_(probability)
http://en.wikipedia.org/wiki/Execution_(computing)
http://en.wikipedia.org/wiki/Mean
http://en.wikipedia.org/wiki/Variance
http://en.wikipedia.org/wiki/Expected_value
http://en.wikipedia.org/wiki/Expected_value
http://en.wikipedia.org/wiki/Negative_relationship
http://en.wikipedia.org/wiki/Stationary_process#Second-order_stationarity
http://en.wikipedia.org/wiki/Even_and_odd_functions
http://en.wikipedia.org/wiki/Even_and_odd_functions#Even_functions
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statictically significant explanatory, geosampled,  vector, arthropod-related, endemic, transmission-oriented, foci 

clustering, parameterizable, covariate coefficients.  

Regardless, normalization would still be important in any, robust, endemic, seasonal, predictive, vector, 

arthropod-related, transmission-oriented, sub-meter resolution, grid-stratifiable, ento-ecoepidemiological, 

endmember,LULC malaria, oviposition, risk model since the interpretation of the autocorrelation as a correlation 

coefficient can provide a scale-free measure of the strength of statistical dependence.  Normalization will have an effect 

on the immature, capture point endmember, uncoalesced habitat properties of the estimated seasonal, serially correlated, 

endmember, predictor variables. Since autocorrelation can be quantifiable   as the correlation amongst values of a single 

variable  in a  robust, vector, arthropod-related, malarial, oviposition, endemic, transmission-oriented, endmember, 

LULC, risk model,  strictly attributable to their relatively close geolocational positions on a two-dimensional surface, 

introducing a deviation from the independent observations assumption of classical statistics[1], it may be  vital to 

seasonally quantitate this component in   a seasonal, malaria, orthogonal,  vector arthropod, capture point, risk model, 

endmember framework whenst eco-georefernecable, targeting hyperproductive, seasonal, ento-ecoepidemiological foci. 

Unfortunately, currently, in seasonal, multivariate, prognosticative, vector, arthropod-related, probabilistic, 

malarial, eco-epidemiological, sub-mter reoslution,geoclassifiable, optimizable,  grid-stratifiable,  endmember,  LULC, 

risk models, the above definition is often employed without the normalization, that is, without subtracting the mean and 

dividing by the variance. As such, when the autocorrelation function is normalized by mean and variance in the 

endemic, LULC, orthogonal, risk model, it would act as an autocorrelation coefficient. In a seasonal, predictive, vector, 

arthropod-related, eco-georferenecable, endemic, transmission-oriented, oviposition, malaria, endemic, risk model. 

Given a signal , the continuous autocorrelation  may be  defined as the continuous cross-correlation integral 

of with itself, at lag .whenst where 

represents  a seasonal, hyperproductive foci.  

Methods Materials  

Study area: The studies were conducted 100 km northeast of Nairobi, in Karima village within Mwea Rice Scheme in 

Kenya. Mwea occupies the lower altitude zone of the Kirin-yaga District in an expansive low-lying, formally wet-

savannah ecosystem. The Mwea rice irrigation scheme is lo-cated in the west central region of Mwea Division and 

coversan area of approximately 13,640 hectares. More than 50% of the scheme area is used for rice cultivation. The 

remaining area is used for subsistence farming, grazing, and communityactivities. The mean annual precipitation is 950 

mm withmaximum rainfall occurring in April–May and October–November. The average temperatures range from 

16°C to26.5°C. Relative humidity varies from 52% to 67%. The study site village Karima has approximately 358 

homesteads with more than 2250 residents. Cows, goats, chick-ens, and donkeys are the primary domestic animals and 

theyare kept within 5 meters of most houses. More than 90% of the houses have mud walls with iron roofing. 

Rice cultivation.: In Karima, the beginning of each croppingcycle is scheduled according to the water availability 

throughthe irrigation water distribution scheme. The schedule of in-dividual rice husbandry also differs within the water 

availability time limits from one group of rice fields to another. Most fields are cultivated once a year, although some 

farmers cul-tivate a second crop. The typical cultivation cycle includes asowing–transplanting period (June–August), a 

growing pe-riod (August–November), and an post-harvest period (No-vember–December). The second crop is 

cultivated prior tothe short rainy period between January and May. The dura-tion of the rice cycle varies between 120 

and 150 days de-pending on the rice variety. The cycle includes a flooded vegetative period when plants develop and 

grow, a reproductivephase with limited water during which plants stop growingand orient towards the development of 

the panicles andgrains, and a ripening phase (water is drained) in which plantssenesce and their water content drops. 

Rice plants are usually transplanted from flooded small seed beds when 20–30 days old, and the vegetative phase lasts 

45–60 days, including the seedling transplant, tillering, and stem elongation stages.Tillering extends from the 

appearance of the first tiller untilthe maximum tiller number is reached. In previois literature (Muturi et al. 2007, 

Mwangamgi et al 2008), ric-tillering aquatic, larval habitats were found to be the mosqt productive for emrging 

immatures. Jacob et al. (2009) constructed a rice ecosystem, real-time ArcGIS cyberenvironment for remotely capturing 

An. arabienis aquatic, lareval habitat, seasonal, frequency, density, count values in Karima village, which allowed 

http://en.wikipedia.org/wiki/Statistical_dependence
http://en.wikipedia.org/wiki/Signal_(electronics)
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detereming a sub-meter resolution ento-ecoepidmeiological, foreast matris and a sub-pixel eco-endmember, 

vulanreability analyses. 

In Karima, 207 temporary, permanent,and semipermanent aquatic habitat sites were located, andmapped using 

a CSI-Wireless differentially corrected globalpositioning system (DGPS) Max receiver using a OmniStarL-Band 

satellite signal with a positional accuracy of less than1 meter (Advanced Computer Resources Corp., Nashua,NH). 

Water bodies were inspected for mosquito larvae usingstandard dipping techniques with a 350-mL dipper to collect  the 

mosquito larvae.The number of dips per habitat was afunction of habitat size (e.g., paddies 0.3–1 hectares) andranged 

from 15 to 25. All data from the habitat characterization of each aquatic larval habitat was recorded on a fieldsampling 

form ( see Table 2). 

 

Table 2. Environmental sampled within cluster based varying and constant covariates of immature An, arabiensis 

study site as entered in SAS
®
  

Variable Description  Units 

GCP Ground control points Decimal-degrees 

DISCAP     Distance from capture point Meters 

ELEV elevation Meters 

DEPTH Capture point Meters 

CANVEG Canopy vegetation Percentage 

SEA Rice-cycle Meters 

DISHAB Distance between  Meters 

 

 

Base maps for this study including major roads and hydrography were created using ArcGIS 10.3.  Aquatic 

larval habitat with its associated land coverattributes from Karima were entered into a Vector ControlManagement 

System (VCMS) (Advanced Computer Re-sources Corp.) database. The VCMS database supported mobile field data 

acquisition in Karima through a Pock-etPC™. All two-way, remote synchronization of data, geo-coding, and spatial 

display were processed using the embedded geographic information system (GIS) Interface Kit™ that was built using 

MapObjects™ 2 technology (Earth SystemsResearch Institute). The VCMS database plotted and update GPS ground 

coordinates of the geosampled, An. arabiensis aquatic larval habitat,capture point, eco-georeferenceable,  seasonal 

information and supported  exporting LULC data in spatial format whereby any combination of larval habitats and 

supporting data can be described in a shapefile format (En-vironmental Systems Research Institute, Redlands, CA) for 

use in an ArcGIS. The database displayed this information onto auser-defined field base map. 

 

2.3 Regression analyses: The relationship between geosampled, immature, sub-meter, oviposition, grid-stratified, eco-

georeferenecd,  An. arabiensis,  capture point, aquatic, larval habitats and each
 
individual geo-spatiotemporal, 

geosampled, endmember, endemic, transmission-oriented,  predictive risk–related, explanatory, LULU, sub-meter 

covariate, at the Mwea study site, was then investigated
 
by single variable regression

 
analysis employing  PROC 

MIXED. Since parasite prevalence data are binomial fractions,
 
a regression model was used,

 
as is standard practice for 

the analysis of such data. Poisson regression analyses were used to determine the relationship between An. arabiensis, 

capture point, aquatic, habitat larval count data, village –level, prevalence rates and the geosampled characteristics 

 

The regression analyses assumed independent counts (i.e. Ni), taken at geosampled habitat locations i=1, 2… 

n. The An. arabiensis  larval counts were described by a set of variables denoted by matrix Xi, where a 1×p vector of 
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eco-georeferenceable, oviposition, capture point, covariate coefficient, indicator values for a geosampled,aquatic, larval 

habitat geolocation i. The expected value of these data was given by μi (Xi) =ni (Xi) exp (Xiβ), where β was the vector 

of non-redundant parameters in the An. arabiensis,capture point, eco-georeferenced,  oviposition, ento-

ecoepidemiological, LULC risk model  and the Poisson rates parameter was given by λi (Xi) =μi (Xi)/ni (Xi) [3]. The 

rates parameter λi (Xi) was both the mean and the variance of the Poisson distribution for each eco-

georeferenceable,capture point,  foci geolocation i. The dependent variable wastotal geosampled, frequency,  larval 

density count. The Poisson regression model assumed that the geosampled, aquatic, larval, habitat, geo-spectrotemporal 

data was equally dispersed-that is, that the conditional variance equaled the condition mean. The procedure used 

maximum likelihood estimation to find the endmember regression coefficients. The capture point LULC data was log-

transformed before analyses to normalize the distribution and minimize standard error 

There was considerable overdispersion in the regression-based, capture point,  oviposition  An. arabiensis 

forecast, vulnerability. ento-ecoepidemiological, endmember  model; thus, we employed a negative binomial model 

with a non-homogeneous mean to determine parameters associated to the seasonal, geosampled, An. arabiensis,sub-

meter resolution,   aquatic, larval, habitat, geo-spectrotemporal, grid-straified, LULC data. Overdispersion is often 

encountered when fitting very simple parametric models, such as those based on the Poisson distribution [2]. If 

overdispersion is a feature in a vector, arthropod, capture point, eco-georeferenceable, ento-ecoepidemiological, 

forecast, vulnerability, distribution model, an alternative endmember model with additional free parameters may 

provide a better fit [3]. In this research, a Poisson mixture model with a negative binomial distribution was employed, 

where the mean of the Poisson distribution was itself a random variable drawn from the gamma distribution; thereby, 

introducing an additional free parameter in the geo-spectrotemporal geosampled, grid-stratified, eco-georeferenced, 

eco-geoclassified, LULC, aquatic, larval habitat, endmember, distribution model. The family of negative binomial 

distributions is a two-parameter family which uses several parameterizations for treating overdispersed data [2].The 

Poisson distribution has one free parameter and does not allow for the variance to be adjusted independently of the 

mean [3]. 

A parameterization technique was employed such that two geosampled, capture point, geo-spectrotemporal 

aquatic, larval, habitat, endmember, capture point, LULC variables p and r with 0 < p < 1 and r > 0. Under this 

parameterization, the probability mass function of the ento-ecological geosampled, An. arabiensis, endemic 

transmission-oriented, oviposition-related, endmember, explanatory, predictor variables with a NegBin(r, p) distribution 

took the following form: for k =    kr pp
k

rk
prkf 





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and Γ(r) = (r − 1)! We also employed an alternative parameterization for the 

geosampled, capture point, eco-endmember, LULC  data using the mean λ:  11  pr



r

r
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function which then became:  
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where λ and r were the, eco-georeferenecable, 

geosampled, geo-spectrotemporal parameters.                             

            Under this parameterization, we were able to generate:  
 



exp

1
1

!
lim 


k

kg
k

r
 which was the mass 

function of a Poisson-distributed random variable with Poisson rate λ.  In other words, the alternatively parameterized, 

negative, binomial distribution generated from the regressed, ovipoition, eco-georeferenecd, malaria, aquatic, larval 

habitat explanatory, sub-meter resolution, grid-stratfied, endmember, geosampled, LULC, predictor covariates 

converged to the Poisson distribution, and r controlled the deviation from the Poisson. This made the negative, 

binomial, habitat model suitable as a robust alternative to the Poisson model for modeling the geo-spectrotemporal, 

http://en.wikipedia.org/wiki/Probability_mass_function
http://en.wikipedia.org/wiki/Random_variable
http://en.wikipedia.org/wiki/Poisson_distribution
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immature, endmember, capture point, An. arabiensis  seasonal, geosampled, endemic, transmission-oriented, 

oviposition, grid-stratified, endmember, LULC, signature,  risk–related covariates. 

The negative binomial distribution of the geosampled sub-meter resolution, explanatory, geo-spectrotemporal, 

capture point, observational predictors arose as a continuous mixture of Poisson distributions, where the mixing 

distribution of the Poisson rate was a gamma distribution. The mass function of the negative binomial distribution of the 

capture point, eco-georeferenceable, An. arabiensis aquatic, larval habitat, predictor variables was written 

as         dpprGammakPoissonkf  


1,
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2.4 Bayesian matrix: We then considered a regression problem where the dependent variable to be predicted was not a 

single real-valued scalar but an m-length vector of correlated real geosampled, geo-spectrotemporal, hyperproductive, 

An. arabiensis capture point, aquatic, larval habitats. As in the standard regression setup, there were n (31) seasonal, 

oviposition, endemic, transmission-oriented,  sub-meter resolution, grid-stratified, eco-endmember, aquatic, larval 

habitat, signature,   geosampled LULC observations, where each,eco-georeferenced, capture point observation i 

consisted of k-1 explanatory variables, grouped into a vector of length k where a dummy variable with a value of 1 

had been added to allow for an intercept coefficient. Our model was viewable as a set of m related regression problems 

for each, eco-georeferenced, explanatory, An. arabiensis, endemic, transmission oriented, regresseable,  geo-

spectrotemporal, geosampled, capture point,foci observation i:  

where the set of errors were all assumed to be correlated. Equivalently, thus, the oviposition, 

forecast, vulnerability model was viewed as a single regression problem where the outcome is a row vector and the 

regression coefficient vectors were stacked next to each other, as follows:  The coefficient matrix B 

was  a matrix where the coefficient vectors for each regression problem stacked horizontally: 

The noise vector for each, eco-georeferenced, An. arabiensis, endemic, 

transmission-oriented, geo-spectrotemporal, geosampled, oviposition, geoclassifiable,  capture point, eco-

georeferenceable, aquatic, larval habitat, endmember,  LULC observation i was jointly normal, so that the outcomes for 

a given observation were correlated:  We wrote the entire regression problem in matrix form as: 

 where Y and E were matrices. The design matrix X was an matrix with the 

geosampled observations stacked vertically, as in the standard linear regression setup: . A 

classical, frequentist, linear, least squares solution was then derived by regressively estimating the matrix of regression 

coefficients  using the Moore-Penrose pseudoinverse:  

We employed an Moore-Penrose generalized matrix inverse i matrix  This matrix was independently 

defined by Moore in 1920 and Penrose (1955), and variously known as the generalized inverse, pseudoinverse, or 

Moore-Penrose inverse. All the vector arthropod-related, malaria, mosquito, oviposition, eco-georeferenced,  endemic, 

sub-meter resolution, grid-stratifiable, transmission-oriented, sub-meter resolution,  LULC, endmember, covariate 

coefficients were entered into a matrix 1-inverse, which was implemented in Mathematica as PseudoInverse[m]. The 

Moore-Penrose inverse satisfies =B, =B, = , = where was the conjugate transpose 

[3]. It is also true that  is the shortest length least squares solution to the problem In the ento-

epidemiological, eco-georferenecable, prognosticative, vulnerability, endmember, aquatic, larval, habitat, LULC model 
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the inverse of existed, thus   was seen by premultiplying both sides by to create a square matrix 

which we subsequently inverted to  rendering z= = in the diagnostic residual estimates. 

To obtain the iterative Bayesian solution we needed to specify the conditional likelihood and then find the 

appropriate conjugate prior. As with the univariate case of linear Bayesian regression, we found that we could specify a 

natural conditional conjugate prior which was scale dependent. We wrote our conditional likelihood, ento-

ecoepidemiological, capture point,  risk model  as  and the error E in the 

seasonal geosampled endemic trasnmission-oriented  sub-meter resolution, oviposition, grid-stratified, endmember, 

signature,   An. arabiensis, habitat model, iterative, quantitatively  interpolative   terms of and B which 

yielded We sought a natural conjugate prior—a joint density 

which was of the same functional form as the likelihood. Since the likelihood was quadratic in B in the 

endemic transmission-oriented, predictive, oviposition, geo-spectrotemporal, geosampled, risk model, we re-wrote the 

likelihood so it was normal in (i.e., the deviation from classical sample An. arabiensis, aquatic, larval habitat, 

eco-endmember,LULC estimate). Using the same technique as with Bayesian linear regression, we decomposed the 

exponential term using a matrix-form of the sum-of-squares technique. Here, however, we needed to use Kronecker 

product transformations. 

Given an matrix A and a  matrixB, their Kronecker product , also called their matrix direct 

product, is an matrix with elements defined by where α=  and β= [3]. 

The matrix direct product was implemented in Mathematica as KroneckerProduct[a, b]. The matrix direct product 

rendered the LULC, oviposition, seasonal, geo-spectrotemporal,  geosampled endemic, transmission-oriented,  sub-

meter resolution, grid-stratfied, endmember, signature, capture point,  An. arabiensis related, regression-based matrix of 

the linear transformation induced by the vector space tensor product of the original vector spaces in the model. The 

Kronecker product of the endmember, sub-meter resolution, grid-stratfied, forecast, vulnerability model was denoted by 

⊗ which was based an operation on two matrices of arbitrary size resulting in a block matrix. Hence, our matrix was a 

generalization of the outer product from vectors to matrices, which rendered the matrix of the tensor product with 

respect to a standard choice of basis. Initially, we employed A which was an m × n matrix and B  which was a p × q 

matrix . In so doing, the Kronecker product A ⊗ B was the mp × nq block matrix: more 

explicitly: 

 

    We noted that if A and B represent linear transformations V1 → W1 and V2 → W2, respectively in the endemic, 

transmission-oriented, geo-spectrotemporal, ento-ecoepidemiological, geosampled dataset of  capture point, foci 

endmember, prognosticators then A ⊗ B represented the tensor product of the eco-georeferenced, An. arabiensis, 
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explanatory, LULC, observation model estimator V1 ⊗ V2 → W1 ⊗ W2. We then calculated the sum-of-squares to 

obtain expression for the likelihood 

.  We also developed a 

robust conditional form for the priors: where r  was an inverse-Wishart distribution and 

 was some form of normal distribution in the matrix B. This was accomplished employing the vectorization 

transformation, which converted the likelihood from a function of the matrices to a function of the vectors 

 We then wrote the residual LULC endmember model 

 We formulated the 

expression where  denoted the Kronecker product of 

matrices A and B.  A generalization of the outer product was multiplied for tabularizing an matrix by a 

matrix to generate an matrix, consisting of every combination of products of elements from the 

two matrices. Then which consequently lead to a 

likelihood quantification which was normalized [i.e. ].With the likelihood in a more tractable form, we found  

a natural (i.e., conditional) conjugate prior for the predictive, oviposition, geo-spectrotemporalendemic trasnmission-

oriented, endmember,   sub-meter resolution, oviposition, grid-stratified, endmember,  geosampled, An. arabiensi,s 

endemic transmission-oriented,  forecast, vulnerability model. 

To obtain the Bayesian solution, we specified the conditional likelihood and then found the appropriate 

conjugate prior in the eco-georeferenced, seasonal, geosampled, endemic trasnmission-oriented,   An. arabiensis 

signature,  related, endemic, transmission-oriented, risk model LULC, endmember estimators. As with the univariate 

case of linear Bayesian regression, we found that we could specify a natural conditional conjugate prior which was 

scale dependent. We then wrote our conditional likelihood as writing the 

error E in terms of and B  which yielded We 

sought a natural conjugate prior—a joint density which was of the same functional form as the likelihood. 

Since the likelihood was quadratic in B in the. sub-meter resolution, oviposition, grid-stratified capture point, ento-

ecoepidemiological, eco-georeferenecable, LULC endmember model, we re-wrote the likelihood so it was normal in 

. 

 

Employing the same technique as with Bayesian linear regression, we eigendecomposed the exponential term 

using a matrix-form of the sum-of-squares technique. Here, however, we needed to use Matrix Differential Calculus 

(i.e., Kronecker product and vectorization transformations).First, we let  the sum-of-squares quantitate a new expression 

for the likelihood: 

. We robustly  

developed a conditional form for the priors: where  was  an inverse-Wishart distribution 

and  was some form of normal distribution in the matrix B. This was accomplished using the vectorization 

transformation which converted the likelihood from a function of the seasonal, oviposition, geosampled, endemic, 

transmission-oriented, sub-meter resolution, grid-stratified, rco-endmember, An. arabiensis, regression-based, 

signature-related, multivariate matrices to a function of the vectors . We optimistically 

calculated the geosampled, LULC, capture point, variable, seasonal distribution and established  

.. Therefater,  for  robuslty quantitating the 

variables we let where  denoted the Kronecker product of 

matrices A and B.Next, a generalization of the outer product multiplied an matrix by a matrix to 

generate an matrix, consisting of every combination of products of elements from the two matrices. 

Then which led to a likelihood which was normal in .With the 

likelihood in a more tractable form, we then found a natural (i.e., conditional) conjugate prior for the seasonal, geo-

spectrotemporal, eco-georeferenced, capture point, aquatic, larval habitat,  geosampled endemic, sub-meter resolution, 

oviposition, grid-stratified, eco-endmember, signature,  transmission-oriented,LULC risk model. 
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  We began with a "prior distribution" which was based on the relative likelihoods of the geosampled, An. 

arabienis, explanatory, endemic, transmission-oriented time series,  “Bayesianized” predictive, risk –related, capture 

point, eco-georeferenced, geo-spectrotemporal, aquatic, larval, habitat  covariates.  In practice, it is common to assume 

a uniform distribution over the appropriate range of values for the prior distribution [3].We then calculated the 

likelihood of the observed distribution as a function of the endmember, sub-meter resolution, oviposition, grid-

stratified, parameter values, multiplied this likelihood function by the prior distribution, and then normalized the 

parameters  to obtain a unit probability over all possible values (i.e., posterior distribution). The mode of the 

distribution was then the parameter estimate, and "probability intervals". These intervals represented the Bayesian 

analog of confidence intervals in the regression-based distribution model. 

 

In our Bayesian formulation, the specification of aquatic, larval habitat, the An. arabiensis, forecast, 

vulnerability, eco-endmember, signature, LULC, frequency model was completed by assigning priors to all unknown 

parameters. We used our dataset of geo-spatiotemporal empirical LULC observations, where each xi for  

was assumed to be distributed according to some distribution p (xi | θ). 

 In this research, θ was a parameter that was unknown and had to be inferred from the geosampled, ento-

ecoepidemiological, eco-georeferenced capture point, LULC data. Our Bayesian procedure began by assuming that θ 

was distributed according to some prior distribution p (θ | α), where the parameter α was a hyperparameter. The joint 

probability of the geosampled,  endemic, transmission-oriented, sub-meter resolution, oviposition, endmember, 

signature,   predictive, risk-related, ento-ecoepidemiological, geo-spectrotemporal, geosampled, capture point,  grid-

stratified, habitat data was then determined using:  ;whereby,  

and  were conditionally independent on the hyperparameters. Bayesian inference then 

determined the posterior distribution of the parameter   employing the robust regressable expression: 

= . For the 

fixed, capture point, geosampled,  geoclassified, LULC, geo-spectrotemporal, eco-endmember,aquatic, larval, habitat,  

signature,   predictive, regression parameters, we chose a diffuse prior, [i.e., p (γ) const,]  A prior distribution of a 

parameter is the probability distribution that represents your uncertainty about the parameter before the current data are 

examined. [2] Multiplying the prior distribution and the likelihood function together leads to the posterior distribution 

of the parameter. You use the posterior distribution to carry out all inferences[4], A second-order Gaussian random 

walk prior was then employed to allow enough flexibility in the malaria, forecast, vulnerability model while penalizing 

abrupt changes in the function.  

 

Thereafter, we generated heterogeneous random walks in one dimension for determining, eco-

georeferenecable, geolocations of seasonal, hyperproductive, malaria mosquito foci at the Mwea study siste. A way for 

simulating such a random walk is when first drawing a random number out of a uniform distribution that determines the 

propagation direction according to the transition probabilities, and then drawing a random time out of the relevant 

different jumping time probability density functions JT-PDF[2].  The interval in our geosampled, endemic, 

trasnmission-oriented, sub-meter resolution, oviposition, grid-stratified, endmember, signature, predictive, LULC 

endmember data was discrete. In a discrete system, the connections are among adjacent stat while the dynamics are 

either Markovian, Semi-Markovian, or even not-Markovian depending on the model [2]. Heterogeneous random walks 

in 1D have jump probabilities that depend on the location in the system, and/or different jumping time (JT) probability 

density functions (PDFs) that depend on the location in the system [3].Known important results in simple systems 

include a symmetric Markovian random walk, the Green's function (i.e.,PDF) of the walker for occupying state i which 

is commonly  Gaussian and has a variance that scales like time [2].This result holds in a system with discrete time and 

space, yet also in a system with continuous time and space. Here we used a completely heterogeneous semi Markovian 

random walk in a discrete system of L (>1)  where the Green's function was found in Laplace space for determining 

unknown, geo-spectrotemporal, aquatic, larval habitat, hyperproductive, An. arabiensis, oviposition, eco-georeferenced, 

geo-spectrotemporal, geosampled, capture points. The Laplace transform of a function was t\defined 

with, ).  In this research the system was defined through the jumping time (JT) PDFs: ψij (t) 

connecting states i with state j. The jump was from state i. The solution was based on the path representation of the 

http://mathworld.wolfram.com/PriorDistribution.html
http://mathworld.wolfram.com/UniformDistribution.html
http://mathworld.wolfram.com/PriorDistribution.html
http://mathworld.wolfram.com/Likelihood.html
http://mathworld.wolfram.com/PriorDistribution.html
http://mathworld.wolfram.com/PosteriorDistribution.html
http://mathworld.wolfram.com/Mode.html
http://en.wikipedia.org/wiki/Parameter
http://en.wikipedia.org/wiki/Prior_distribution
http://en.wikipedia.org/wiki/Hyperparameter
http://en.wikipedia.org/wiki/Joint_probability
http://en.wikipedia.org/wiki/Joint_probability
http://en.wikipedia.org/wiki/Posterior_distribution
http://en.wikipedia.org/wiki/Heterogeneous_random_walks_in_one_dimension
http://en.wikipedia.org/wiki/Markov_process
http://en.wikipedia.org/wiki/Semi-Markov_process
http://en.wikipedia.org/wiki/Semi-Markov_process
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Green's function, calculated by including all the path PDFs of all the geosampled, eco-georeferenced, aquatic, larval, 

habitat, explanatory, endmember, eco-georeferenced, aquatic, larval habitat, LULC endmember, predictor covariates 

using :  

We subsequently quantitatively derived and  from 

 Thereafter,  we used these equations to generate the following equations in PROC 

MCMC : and  and 

.Here, L=1, . The symbol [L/2] that appeared in the upper bound in 

the Σ in these algorithms was the floor operation which essentially entailed rounding off the geo-spectrotemporal, 

geosampled ecogeoreferenced, sub-meter resolution, grid-stratified, capture point, An. arabiensis, endemic, 

transmission-oriented, oviposition,   LULC, signature, prognosticative, eco-endmember covariates towards zero. In this 

research the factor I) had the same form as in   which was calculated on a lattice . Lattice  was 

constructed from the original lattice generated from the geosampled,  endemic, trasnmission-oriented, sub-meter 

resolution, aquatic,  larval habitat endmember signature, dataset by taking out from it the states i and j and the states 

between them, and then connecting the obtained two fragments. When each fragment is a  single state,   

[2]. 

 

A random walk having a step size that varied according to a normal distribution of the geosampled, eco-

georeferenced  aquatic, larval habitat, endemic transmission-oriented,forecast, 

vulnerability–related, explanatory, LULC. endmember covariates was used to geolocate validate geolocations of 

unknown seasonal, hyperproductive foci. The Black–Scholes formula used a Gaussian random walk as an underlying 

assumption. Here, the step size was the inverse cumulative normal distribution Φ 
− 1

(z,μ,σ) where 0 ≤ z ≤ 1 were  the 

geosampled, aquatic, larval habitat, density, seasonal, count values  and μ and σ were the mean and standard deviations 

of the normal distribution, respectively. The Black–Scholes equation we used was a partial differential equation. The 

equation was  our data followed a classic geometric Brownian motion (GBM). 

That is,  where W was a  Brownian motion. The GBM (i.e. Exponential Brownian motion) is a 

continuous-time stochastic process in which the logarithm of the randomly varying quantity follows a Brownian motion 

[2].Brownian motion is the presumably random drifting of suspended particles or the mathematical model used to 

describe such random movements [3].Note that W, and consequently its infinitesimal increment dW, were the only 

source of uncertainty in our model. Intuitively, W (t) is a process that fluctuates up and down in such a random way that 

its expected change over any time interval is 0.  The variance over time T  in W(t)  when we constructed the Gaussian 

random walks for    the geo-spectrotemporal, vector, insect sub-meter resolution, oviposition, grid-stratified aquatic, 

larval habitat, endmember distribution,LULC models  was essentially equal to T;therefore  in  the model  the expected 

value of μ is dt with  a variance of σ
2
dt. 

 

In this research, the stochastic process St generated from the, empirical,  clinical, 

field and remote, geo-spatiotemporally geosampled  larval habitat, LULC endmember, parameter estimates was said to 

follow a GBM which  satisfied the following stochastic differential equation (SDE):  where 

Wt was a  Brownian motion and μ ('the percentage drift') and σ were constants. For an arbitrary initial value S0 the 

above SDE had the analytic solution under Itō's interpretation: which in the malaria, 

mosquito, sub-meter resolution, oviposition, grid-stratified, eco-georefrenceable, forecast, vulnerability, endmember, 

signature model was for any value of t, a log-normally distributed explanative, vector arthropod-related immature 

random variable with expected value and variance The correctness 

of this solution was checked using Itō's lemma. 
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http://en.wikipedia.org/wiki/Partial_differential_equation
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In its simplest form, Itō's lemma states the following: for an Itō drift-diffusion process  

and any twice differentiable function ƒ(t, x) of two real variables t and x, one 

has [3].This immediately implies that ƒ(t, X) is itself an Itō drift-

diffusion process in any sub-meter resolution, oviposition, grid-stratified, malaria, mosquito, capture point, eco-

georrferenced, forecast, vulnerability, endmember,LULC model used for seasonally targeting unknown, 

hypeproductive, aquatic, larval habitats. In higher dimensions, Ito's lemma explanative, time seres 

states where is a vector of Itō 

processes, is the partial differential w.r.t. t, is the gradient of ƒ w.r.t. X, and is the Hessian matrix of 

ƒ w.r.t. X. More generally, the above formula also holds for any continuous d-dimensional semimartingale 

X = (X
1
,X

2
,…,X

d
), and twice continuously differentiable and real valued function f on R

d
. Some people prefer to present 

the formula in another form with cross variation shown explicitly as follows, f(X) is a semimartingale 

satisfying In this expression, the term fi represents the partial 

derivative of f(x) with respect to x
i
, and [X

i
,X

j
 ] is the quadratic covariation process of X

i
 and X

j
. 

 

Finally, for the spatial components, VI, a Markov random field (MRF) prior was assigned for quantiating 

inconspicuous uncertainty ( e.g., spatial heteroskedascity) in the endmember, model, capture point, vulnerability, 

prognosicators.  The conditional distribution of VI, given an adjacent eco-georeferenced, explanatory, aquatic, larval 

habitat, geosampled, geo-spectrotemporal, LULC, endmember,  predictor covariate, VJ, was a univariate normal 

distribution with mean equalling the average VJ coefficient values of VI’s neighboring geosampled capture point, where 

the variance was equal to  divided by the number of total adjacent An. arabiensis. sub-meter resolution, oviposition, 

grid-stratified, parameterizable, eco-endmember, capture point, frequency,LULC estimators. This lead to a joint density 

of the form: 

   













 

ji

jip
~

2
2

2

2
exp 


 



where i ~ j denoted geosampled habitats i adjacent to j, and where the 

parameterizable,capture point,eco-georeferenecable LULC endmember estimates VI and VJ in the adjacent sampled 

aquatic, larval habitats were similar. The degree of uncertainty in the geo-spectrotemporal, geosampled data was then 

determined by the unknown precision parameter . 

 

By writing , , , and  for a well- defined design matrix Z, a vector 

of regression parameters β, with all different priors, was expressed in a general Gaussian form employing the 

expression: 

 













 jjj

j

jj Kp 



2

2

2

1
exp

 with an appropriate penalty matrix Kj. The model structure was dependent on 

the geosampled eco-georeferenced explanatory, LULC, endmember, predictor, aquatic, larval habitat covariates and 

smoothness of the function. In most cases, Kj is rank deficient and, hence, the prior for βj is improper[2]. For the 

variances 

2

j  inverse Gamma priors IG (aj, bj) was assumed, with hyperparameters aj, bj chosen such that this prior was 

weakly informative. 

The Bayesian framework in this research was defined by conditional probabilities constructed from the 

geosample, time series, An. arabiensis ento-ecoepidmiological,eco-georefernecable,  aquatic, larval habitat, endmeber 

LULC data. The observation nodes in the Bayesian estimation model were denoted by a vector , 

and the set of states of the observation node  j generated from the sampled data that was represented by 

  
In the malaria, mosquito, sub-meter resolution, oviposition, grid-stratified, endmember, forecast, vulnerability 

model the hidden nodes were denoted by  The probability that the state of the hidden node  was i, 

, was expressed as  . Because  was a probability distribution,  

http://en.wikipedia.org/wiki/It%C5%8D_calculus#It.C5.8D_processes
http://en.wikipedia.org/wiki/Differentiable
http://en.wikipedia.org/wiki/Gradient
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 which held for  in the model, the conditional probability was the jth observation node 

 and l,  which was based on the condition that the states of hidden  nodes , which  

were generated by . We defined   and let  be the set 

of all the geosampled An. arabiensis, aquatic, larval habitats, geo-spatiotemporal parameters in the Mwea study site. 

Then the joint probability that the states of observation nodes were  and the states of hidden 

nodes were then  which was based on . 

     The marginal probability that the states of hypeprproductive observation the nodes were x was generated 

using . We employed the notation 

for the summation over all states of hidden nodes. We assumed the 

geosampled ecogeoreferenced, endmember, An. arabiensis, aquatic, larval habitat, -spectrotemporal, endemic 

transmission-oriented,  predictive, risk-related, observational covariates  were independently 

and identically taken from the true distribution   . In Bayesian learning, the prior distribution  on the 

parameter  is set [2]. Here, the posterior distribution  was computed from the eco-georeferenecd, geo-

spectrotemporal, capture point, oviposition, ento-ecoepidemiological, aquatic larval habitat,eco-endmember LULC 

dataset and the prior by  which was generated employing the 

expression , and (i.e., the normalization 

constant). The Bayesian predictive distribution  was provided by averaging the model over the posterior 

distribution as follows, . The Bayesian stochastic complexity F (Xn) was 

defined by  which was used as a criterion by which the oviposition, forecastable, ento-

ecoepidemiological, eco-georeferenced, model estimtors was selected and the vulnerabityhyperparameters in the prior 

were optimized. We then let  be the expectation over all the geosampled An. arabiensis, aquatic, larval habitat, 

endmember, LULC  parameters. The Bayesian stochastic complexity had the following asymptotic 

form:  where λ and m were the hyperproductive, 

seasonal, capture point, geosampled and their indicator, immature, density, count values, respectively. In regular 

models, 2λ is equal to the number of parameters and m = 1, while in non-identifiable models, 2λ is not larger than the 

number of parameters and m ≥ 1 [25].However, Bayesian frameworks employing the time series, ento-

ecoepidemiological, geo-spectrotemporal, clinical, field and remote-sampled aquatic, larval habitat,LULC endmemver 

data required integration over the posterior distribution, which typically could not be performed analytically. 

 

We let  be the geo-spectrotemporal, endemic, geosampled, An. arabiensis, aquatic, larval,habitat, 

parameterizable,LULC eco-endmebmber,orthogonal estimates corresponding to the hidden error variables in the 

equation . The variational framework approximated the Bayesian posterior  of the 

hidden variables and the malarial parameters employing the variational posterior , which was factorized 

using , where  and  were posteriors based on the inconspicuous, 

sub-meter resolution, grid-stratified, geosampled capture point,  error coefficients in the empirical, endmember, aquatic, 

larval, habitat, oviposition, forecasted datasets respectively. The variational posterior  was chosen to 
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minimize the functional [q] which here was defined by which 

was then further defined by s employing  the geo-spectrotemporal, 

geosampled capture point, endmember, frequency, parameters, where , the 

true Bayesian posterior was  and the variational posterior was . This led to the functional 

[q] being minimized under the constraint and tthe variation posteriors,  and  being 

parsimoniously computed employing the equation  and 

 where  and  were the normalization constants. It is important 

to note that these equations gave only necessary conditions for the functional  to be minimized in the An. 

arabiensis, aquatic, larval habitat, forecast, vulnerability, endmember, capture point, eco-georferenceable, oviposition, 

LULC, endmember, distribution model. The variational posteriors were computed by an iterative algorithm. We defined 

the variational stochastic complexity  by the minimum value of the functional  which 

was , thereafter based on the difference between  and the Bayesian stochastic 

complexity .  

 

Next, we generated variational posterior for the estimation matrix for the malaria, mosquito model. We 

assumed that the prior distribution (ω) of the An. arabiensis aquatic, larval habitat geosampled, eco-endmember 

LULC parameters was the conjugate prior distribution. Hence, (ω) was given 

by , and the geosampled, eco-georeferenced explanatory, signature, 

geoclassied,LULC, predictor covariates estimates were given by  

, which were Dirichlet distributions with hyperparameters 

generated using  > 0 and  > 0. The Dirichlet distribution [i.e.,Dir(α)] is a family of continuous multivariate 

probability distributions parameterized by the vector α of positive reals which can generate the multivariate 

generalization of the beta distribution, and conjugate prior of the categorical distribution and multinomial distribution in 

Bayesian statistics for quantification of predictive, vector, larval habitat, LULC  data [2].The Dirichlet distribution is 

the multinomial extension to the beta distribution for a binomial process which can also be used in quantifying 

probabilities in predictive larval habitat probability models [3]. 

 

We then let  be 1 when n = 0 and 1 otherwise, and then defined the sampled capture point, sub-meter 

resolution, oviposition, grid-stratified, LULC endmember, parameter, uncertainty estimates 

using . We also employed   . In these 

equations, was the state of the jth capture point, seasonal, hyperproductive, foci observation node and  was the 

state of the kth hidden node. The variational posterior distribution of the endmember parameters  was given 

by using the equation where each geosampled, geo-

spectrotemporal,   An. arabiensis, aquatic,  larval habitat,LULC endmember,  explanatory predictor covariate was 

http://www.vosesoftware.com/ModelRiskHelp/Distributions/Continuous_distributions/Beta_distribution.htm
http://www.vosesoftware.com/ModelRiskHelp/Probability_theory_and_statistics/Stochastic_processes/The_binomial_process.htm
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generated using the equation   It then 

followed that , for  and  denoted the sum over  

 

2.5 Eigenvector analyses:  Initially, a misspecification perspective for the uncertainty-oriented, vector arthropod, 

endmember, forecast, vulnerability estimation model endmember estimators was generated assuming that the geo-

spatiotemporal,aquatic,  larval habitat, endemic, transmission-oriented,  capture point, ento-ecoepidemiological , 

prognosticative estimators were able to be quantitated by 
*  Xy  (i.e. regression equation) had autocorrelated 

disturbances
* , which decomposed into a white-noise component, , and a set of unspecified and/or misspecified 

models that had the structure

*





 EXBy . White noise is a univariate or multivariate discrete-time stochastic 

process whose terms are independent and identically distributed (i.i.d.) with a zero mean [2]. In this research, the 

misspecification term was E . Endmember quantification of the topographic, sub-meter resolution, oviposition, grid-

stratified, endmember, LULC  patterns rendered  from the distribution of the eco-georeferenced, explanatory, endemic, 

transmission-oriented, geo-spectrotemporal, oviposition,  capture point,  observational, geosampled eco-georeferenced, 

An. arabiensis larval habitat,  explanatory, prognosticative, aquatic, larval habitat covariates was required to describe 

independent key dimensions of the underlying spatial processes in the sampled habitat data and for defining a spatial 

pattern in the misspecification term. 

 

A spatial autoregressive model was then generated that employed a geosampled, An. arabiensis, oviposition, 

aquatic  larval, habitat, eco-endmember LULC  variable, Y, as a function of nearby geosampled habitat Y explanatory, 

predictor, covariate indicator value I (i.e., an autoregressive response) and/or the residuals of Y as a function of nearby 

sampled habitat Y residuals (i.e., an SAR or spatial error specification). For vector arthropod, aquatic,  larval habitat, 

malaria, oviposition, endmember, predictive modeling the SAR model furnishes an alternative specification that 

frequently is written in terms of matrix W [1].As such, its spatial covariance was a function of the matrix (I - ρ CD
-1

)(I - 

ρD
-1

C) = (I - ρ W
T
)(I - ρ W), where T denoted matrix transpose. The resulting matrix was symmetric, and was 

considered a second-order specification as it included the product of two spatial structure matrices (i.e., W
T
W) – 

adjacent geosampled, aquatic, larval habitats as well as those having a single intervening unit involved in the 

autoregressive function. This matrix restricted positive values of the autoregressive parameter to the more intuitively 

interpretable range of 0 ≤ ≤ 1. 

In this research distance between geosampled, geosampled, eco-georeferenced, aquatic, larval habitats was 

defined in terms of an n-by-n geographic weights matrix, C, whose cij values were; 1 if the An. arabiensis ,capture 

point, foci geolocations i and j were deemed nearby, and 0 otherwise. Adjusting this matrix by dividing each row entry 

by its row sum gave C1, where 1 was an n-by-1 vector of ones, converted this matrix to matrix W. The resulting SAR 

model specification, with no geosampled, larval, habitat covariates present (i.e., the pure spatial autoregression 

specification), took on the following form: εWY1Y   ρρ)-μ(1    ,  where μ  was the scalar conditional mean of 

Y, and ε  was an n-by-1 error vector whose endmeber LULC parameters were statistically dependent ,.normal, random 

variates. The spatial covariance matrix for analyzing the geosampled, eco-georeferenced, capture point, foci, predictor 

covariates was 21σ)]ρ -)('ρ -[()]μ-()'μ-E[(  WIWIΣ1Y1Y , where E ( ) denoted the calculus of expectations, I 

was the n-by-n identity matrix denoting the matrix transpose operation, and 
2σ  was the error variance. 

 Next, an autoregressive, endmemberm model specification was generated.  The model was written as: 

where  were the clinical, field and remote, geo-spectrotemporal,  

geosampled, aquatic, larval habitat, sub-meter resolution, oviposition, grid-stratified, eco-endmember ,LULC  

parameters of the model, c was a constant and  was the white noise. When coupled with regression and the normal 

probability model, an autoregressive specification results in a covariation term characterizing spatial autocorrelation by 

http://en.wikipedia.org/wiki/White_noise
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denoting the autoregressive parameter that with ρ, a conditional autoregressive covariance specification [1] which in 

this research involved the matrix (I - ρ C), where I was an n-by-n identity matrix. In an autoregressive expression; 

however, the response variable is on the left-side of the equation, while the spatial lagged version of this variable is on 

the right side. Therefore, one of the main objectives in this research was to bring the spatially unlagged, aquatic, larval 

habitat, ovipsoition, endogenous variable, y  exclusively on the left-hand side of the regression equation in order to 

decorrelate the geosampled, eco-georeferenced, An. arabiensis, aquatic, larval habitat, endemic, trasnmission-oriented,  

predictive, risk-related, explanatory, endmeber,LULC, geo-spectrotemporal covariates. In this research, this was 

accomplished by expanding the matrix term:   







0

1

k

kkVVI  , as an infinite power series, which was feasible 

under the assumption that the underlying spatial process in the geosampled ento-ecological,LULC,ovisposition, eco-

georeferenecable,  datasets was stationary. The simultaneous autoregressive,capture point, forecast, vulnerability,  error 

model was then rewritten as   VXXVyy
.
 Substituting this transformation 

rendered:      


XVXVIy
1 ,   





VXXVy
k

kk

0

,

  














00

11

0 k

kk

k

kk

k

kk VXVXVy  ,   















0

0

11 k

kk

k

kk

k

kk VXVXVXy 

  

, 

 








 

termcationmisspecifi

k

kkVXy
1

 

The misspecification term    ,,1kV kk   remained uncorrelated with the exogenous variable, X , 

as the standard OLS assumption of the disturbances,  , were uncorrelated in the endmember,capture point, sub-meter 

resolution, oviposition, grid-stratified,LULC predictor variables generated from the parameter estimates. (b). the spatial 

lag model on the other hand, was expressed as:     XyVI .Substituting the transformation 

generated:  





0k

kk XVy   and    








  
termcationmisspecifi

k

kk XVXy
1

. The misspecification term 

   ,,1kXV kk   included the exogenous,aquatic, larval, habitat variables X . Consequently, the 

exogenous variables were correlated with the misspecification term. Under this condition, standard OLS results for the 

basic regression model
*  Xy , generated from the geosampled, eco-georeferenced aquatic, larval habitat, 

endmeber, explanatory predictor covariates provided biased estimates ̂  of the underlying regressed, sub-meter 

resolution, oviposition, grid-stratified, endmeber LULC parameters  .  

 

   The correlation, or lack thereof, between the exogenous variables and the misspecification terms of both 

endemic,capture point,  An. arabiensis, larval habitat, e= transmission-oriented predictive, risk, ento-

ecoepidmeiological, eco-georefernecable, endmember LULC models were then used to design spatial proxy variables, 

so that the habitat properties of either model could be satisfied. We considered two different projection matrices, 

    TTIM 1111
1

1


  and     TT

X XXXXIM
1

 . The projection matrix  1M  is a special case of the more 

general projection matrix  XM [3]. .The general projection matrix  XM  included, in addition to the constant unity 

vector1 , additional exogenous variables. The set of spatial filter, eigenfunction eigen-decomposable eigenvectors 

 
SARnee ,,1   was extracted from the quadratic form        








 X

T

XSARn MVVMevecee
2

1
,,1 

 (2.1) was designed 



International Research Journal of Computer Science and Application                       

Vol. 2, No. 1, March 2018, pp. 1-181                                                                         

  Available Online at http://acascipub.com/Journals.php 
 

 

 

82 

Copyright © acascipub.com, all rights reserved 

orthogonal to the exogenous variable X . The projection matrix  XM  imposed this constraint. In contrast, the set of 

eigenvectors  
Lagnee ,,1   that was extracted from        








 111

2

1
,, MVVMevecee T

Lagn  (2.2), 

 

These two different sets of eigenvectors established a basis for constructing an LULC, geo-spectrotemporal, 

autocorrelation, An. arabiensis, aquatic, aquatic, larval habitat regression-based oviposition, endmember, distribution 

model. Both expressions were solely defined in terms of exogenous information. This model feature enabled us to also 

use the eigenvector spatial filtering approach for predictions of the endogenous variable y . The associated sets of 

ovipsoition, aquatic, larval habitat, explanatory, eco-georeferenceable, LULC,spatial filter,  eigenvalues  
Lagn ,,1   

and  
SARn ,,1  , with 1 ii  , range, were used for properly standardizing adjacent link matrices V  that were 

related to irregular spatial tessellations, generated from the geosampled eco-georeferenced,capture point, geo-

spectrotemporal, ento-ecoepidemiological, endmember LULC covariates.  

 

The components of each  capture point, eigenvector, ie , when mapped onto an underlying spatial tessellation, 

exhibited a distinctive topographic pattern ranging from positive spatial autocorrelation,(PSA), (i.e., similar values of 

log-transformed, aquatic,   larval,habitat, LULC count data  aggregating in geographic space) for  IEi  , to 

negative spatial autocorrelation (NSA) (i.e., dissimilar log-values aggregating in geographic pace) for,  IEi  . 

Each seasonal, hypeproductive, capture point, endmember, eigenvector was mapped  where  IE  was the expected 

value of Moran’s I  under the assumption of (a) spatial independences and (b) use of the related projection matrix 

 1M  or  XM , respectively. The associated Moran’s I  autocorrelation coefficient, of each eigenvector, ie  generated, 

was equal to its associated eigenvalue     i

T

ii

TT

ii eeeVVe 2 , if V  was scaled to 

satisfy    nVV TT  211 . Moran’s autocorrelation often denoted as I is an extension of Pearson’s product moment 

correlation coefficient can be used to measure the amount of autocorrelation in an ecological-sampled datasets of vector 

insect   arthropod-related habitat weighted estimators[1]. 

 

 We employed  the Pearson's correlation coefficient between two geo-spectrotemporal geosampled, eco-

georferenced, sub-meter resolution, grid-stratified, An. arabiensis, aquatic, larval habitat, predictor variables to defined  

the covariance of any two explanatory endmeber regressors divided by the product of their standard deviations using 

 . The formula defined the geosampled, aquatic, larval habitat, geosampled 

population correlation coefficient. Substituting estimates of the covariances and variances also provided the sample 

correlation coefficient, commonly denoted r: An equivalent expression rendered 

the correlation coefficient as the mean of the products of the standard scores. Based on  paired, geo-spectrotemporal 

geosampled, eco-georferenced, sub-meter resolution, grid-stratified, aquatic,  larval habitat ,hyperproductive, seasonal, 

LULC, endmember data, denisty, immature count values (i.e., Xi, Yi), the sample Pearson correlation coefficient 

was  where   was  the standard score, sample mean, and sample 

standard deviation, respectively. The spatial filter, orthogonal eigenvectors yielded distinct risk-oriented,capture point,  

map pattern descriptions of latent spatial autocorrelation in the An. arabiensis, aquatic, larval ,habitat , ento-

ecoepidemiolgical, endmember, LULC data. This was interpreted as synthetic map variables that represented specific 

natures (i.e., positive or negative) and degrees (i.e., negligible, weak, moderate, strong) of potential spatial 

autocorrelation. For the immature An. arabiensis mosquitoes, two counteracting spatial autocorrelation effects were 

conceptualized (i.e., common factors leading to positive and competitive factors leading to negative spatial 

autocorrelation materializing)  at the same time, with a possible net effect being global detection of near-zero spatial 

autocorrelation. If a parsimonious set of eigenvectors is to be selected for a vector arthropod-related, geo-

http://en.wikipedia.org/wiki/Covariance
http://en.wikipedia.org/wiki/Standard_deviations
http://en.wikipedia.org/wiki/Standard_score
http://en.wikipedia.org/wiki/Standard_score
http://en.wikipedia.org/wiki/Mean
http://en.wikipedia.org/wiki/Standard_deviation
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spectrotemporal geosampled, eco-georferenced, sub-meter resolution, grid-stratified,  larval habitat 

distribution,endmember LULC model  then eigenvectors depicting near-zero spatial autocorrelation should be avoided, 

since such a  set of  latent vectors associated with a matrix equation fail to capture any geographic information. 

 

The eigenvector spatial filtering approach added a minimally sufficient set of eigenvectors as proxy-variables 

to the set of linear predictors, in the geo-spectrotemporal geosampled, eco-georferenced, sub-meter resolution, grid-

stratified, An. arabiensis, aquatic, larval habitat, endemic trasnmission-oriented,  predictive, risk-related  model by 

inducing mutual independence in the geosampled, endmember, parameter estimator datasets. The regression,LULC 

capture point, geo-spectrotemporal, oviposition, ecogeoreferenced, residuals represented spatially independent variable 

,eco-endmember components. The spatial pattern in the eigenvectors was synthetic: for positive global autocorrelation 

in the local patterns of the aquatic, larval habitat, endmember parameters exhibited only positive local autocorrelation 

and vice versa for negative global autocorrelation The eigenvectors ie  and je  within each set of eigenvectors, were 

mutually orthogonal, as the symmetry transformation  TVV 
2

1  was a quadratic form as revealed in equations (2.1) and 

(2.2). 

 

As mentioned previously, the eigenvectors of specification (2.1) were orthogonal to the exogenous,capture 

point,aquatic, larval habitat  variables X  of the regression model constructed employing the geosampled eco-

georeferneced, An. arabiensis, capture point, endmember, LULC, ento-ecoepidemiological, covariates; whereas, the 

eigenvectors of specification (2.2) were orthogonal only to the constant unity vector 1  in X . This orthogonality had 

implications for modeling the spatial misspecification terms, in the aquatic, larval habitat, forecast, vulnerability, grid-

stratified,  model and allowed us to link each collection of geo-spectrotemporal geosampled, eco-georeferenced, sub-

meter resolution eigenvectors to its specific autoregressive model by letting  SARE  be a matrix whose vectors were 

subsets of 
SARnee ,,1  . A linear combination of this subset was then approximated by using the misspecification 

term of the simultaneous autoregressive version of the endmember, An. arabiensis aquatic, larval habitat, distribution 

prognosticative, vulnerability –related,LULC  model; (i.e., 





1k

kk

SAR VE  ).   (2.3) 

The linear combination SARE  remained orthogonal to exogenous variables X  and, consequently, the 

estimated time series, geosampled, clinical, field and remote-sampled, geo-spectrotemporal, endmember, LULC, 

specified, predictor variables ̂  were unbiased. Furthermore, as a property of the OLS estimator, the estimated term 

SARE  was also orthogonal to the,capture point, eco-georeferenced, frequency, sub-meter resolution, grid-stratified, 

model  residuals ̂ . The model  ˆˆˆ  SAREXy  eigen-decomposed the endogenous variable y  into a systematic 

trend component, a stochastic signal component, and some white-noise residuals. The term ̂SARE  removed variance 

inflation in the mean squared error (MSE) term attributable to spatial autocorrelation. 

 

Alternatively, for the spatial lag model (2.3), LagE  was a matrix of those eigenvectors that were a subset 

of 
Lagnee ,,1  . The approximation of the misspecification term became   





XVE k

k

k

Lag

1

. Since 

LagE  is correlated with the exogenous variables X [2], its incorporation into the geo-spectrotemporal geosampled, 

eco-georeferenced, sub-meter resolution, grid-stratified, An. arabiensis, aquatic, larval habitat, predictive, LULC 

endmember, risk model distribution model corrected the bias of estimated plain OLS parameters ̂  in the spatial lag 

model. The model  ˆˆˆ  LagEXy , generated from the geosampled eco-georeferenced, aquatic, larval habitat, 

explanatory, capture point, predictor covariates was a decomposition of the spatial lag model into a systematic trend 

component, a stochastic signal component, and some white-noise residuals. However, for the geo-spectrotemporal, 
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geosampled, aquatic,  larval habitat, ento-ecoepidemiological, oviposition, endemic, trasnmission-oriented, capture 

point, predictive, risk LULC,   distribution model, the trend and the stochastic signal were no longer uncorrelated, and, 

again, the MSE was deflated. 

 

The set of eigenvectors  
Lagnee ,,1   of the spatial lag model (2.3) was then calculated independently of the 

exogenous, eco-georeferenced, sub-meter resolution, grid-stratified, capture point, aquatic, larval, habitat variables X .  

In this research, this calculation was dependent on the underlying spatial link matrixV . Consequently, this filtering 

approach was more adaptable to an exploratory specification search of relevant exogenous habitat, endmember LULC 

variables and spatial predictions with changing explanatory endmeber, predictor variable values. In contrast, for the 

simultaneous autoregressive, geo-spectrotemporal, aquatic, larval, habitat model (2.2), the eigenvectors  
SARnee ,,1   

depended, through the projection of  XM , on the exogenous variables X . Thus, any change in the underlying malaria, 

mosquito, oviposition, ento-ecoepidmeiological, endmember, model structure required a recalculation of the 

eigenvectors for generating the tessellations. Spatial filtering, of either the spatial lag model or the simultaneous 

autoregressive model with a common factor constraint, requires identification of only one set of selected eigenvectors, 

namely SARE  or LagE , respectively [2].The relevant set of eigenvectors was applied simultaneously to all the 

empirical, clinical, field and remote geosampled eco-georeferenced, aquatic, larval, habitat, endemic, trasnmission-

oriented,  predictive, risk –related, explanatory, capture point, endmember LULC covariates in either model. For the 

generic autoregressive model (2.1); however, spatial filtering was applied individually to each geosampled, explanatory, 

predictor, covariate coefficients. The generic specification of autoregressive, eco-georeferenced, sub-meter resolution, 

grid-stratified, spatial models associates a specific spatial lag factor with the endogenous y variable and other specific 

spatial lag factors for each geosampled, aquatic, larval habitat, exogenous, geo-spectrotemporal, eco-georeferenced  

LULV variable. We employed the eigenvectors  
Lagnee ,,1   to filter spatial autocorrelation in the generic, 

autoregressive, An. arabiensis, eco-endmember, LULC, capture point, aquatic, larval, habitat model from each 

geosampled endmember estimator. 

 

The next step was to identify suitable and parsimonious subsets of eigenvectors SARE  or LagE  from the geo-

spectrotemporal, An. arabiensis, aquatic, larval habitat endemic, transmission-oriented , geosampled, forecast, 

vulnerability, endmember, geo-spectrotemporal,  LULC model specification (2.1) or (2.2). A particular subset of 

eigenvectors is suitable, if the residuals ̂  of the resulting spatially filtered model become stochastically independent 

with respect to the underlying sampled habitat spatial structure V [2],  In addition, parsimony in the model estimation 

in this research was defined as the smallest possible subset of geosampled, eco-georeferenced, sub-meter resolution, 

grid-stratified, capture point, geo-spectrotemporal eigenvectors which led to spatial independence in the malaria, 

aquatic,  larval habitat, distribution, endmember LULC,  model residuals being identified. The spatial patterns of 

different eigenvectors express independent and uncorrelated dimensions of spatial autocorrelation [2].This approach to 

filter spatial autocorrelation out of regression,capture point, endmember,  model residuals has been explicitly 

formalized for the geo-spatiotemporal geosampled, eco-georeferenced, vector, insect, aquatic, larval, habitat, orthogonal 

LULC covariates  by Jacob et al.  (2005b) which has been used in previous research for spatially extrapolating eco-

georeferenced, habitat, predictor covariates associated to prolific larval habitats. For example, in Jacob et al. (2008a)  an 

eigenfunction decomposition algorithm was used along with  a forward stepwise regression to add eigenvectors to  

regression-based An. gambiae s.l. and Cx. quinqueasciatus, aquatic  larval habitat, endmember LULC models for 

targeting, eco-georferenceable,  prolific habitats in Gulu, Uganda  until the spatial autocorrelation in the resulting 

residuals ^e dropped below a critical level. The linear combination of the selected geo-spectrotemporal geosampled, 

eco-georeferenced, grid-stratified, eigenvectors then expressed the stochastic signal within the vector in the model. The 

measures of clustering of An. gambaie s.l. and Cx. quinquefasciatus, aquatic larval habitats were reported. Estimation 

results from SAS PROC GENMOD for all models were generated. In the models both positive and negative spatial 

autocorrelation eigenvectors were selected by the stepwise negative binomial regression procedure. Positive and 

negative spatial autocorrelation spatial filter component pseudo-R
2
 values were reported using GLMM estimation 

results from SAS PROC NLMIXED. The spatial autocorrelation components suggested the presence of roughly 12% to 

28% redundant information in the larval count. Spatially pseudoreplicated, endmember, capture point, LULC data can 

generate a mispecified model [1]. 
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Results and Discussion 

Initally, ODEs were constructed employing the geosampled, geo-spectrotemporal, sub-meter resolution, An. 

arabeinsis, aquatic, larval habitat, grid-stratified, eco-endmember, LULC data. We noted a time zero value for each 

first-order differential equation.  We employed  a first-order ODE equation where  was  

expressed using separation of the geosampled, An. arabiensis,capture point, LULC variables as  

The equation was expressed as and the equation was solved by integrating both sides to 

obtain We employed a  first-order ODE of the form which was  solved by 

finding an integrating factor  such that = = Dividing through 

by  yielded in the capture point, eco-endmember, prognosticative, signature, LULC, 

vulnerability,  model derivatives ( e.g., covariates of eco-georeferenecable, seasonal, hyperproductive, foci explanators) 

However, this condition enabled us to explicitly determine the appropriate  for arbitrary  and  in the model 

renderings. To accomplish this,we took  from the capture point, LULC, prognosticative signature, grid-

stratfiiable, eco-endmember equation, from which we recovered the original equation (◇),, in the 

form We  integrated both sides of the An. arabiensis, geo-spectrotemporal, seasonal, 

geosampled,  predictive model  to obtain Now integrating both sides of 

(◇) rendered (with  a known function), which we solved for  to 

obtain where   was an arbitrary constant of integration. 

After quantitating the  geosampled, geo-spectrotemporal, An. arabiensis, forecast, vulnerability, 

model estimators employing grid-stratfiiable, sub-meter resolution, th-order linear ODE with 

constant coefficients  we then solved  the characteristic 

equation obtained by writing and setting  to obtain the  complex roots.The LULC, eco-endmember, 

forecast, vulnerability, spectral model  rendered   

 Factoring can render 

the roots , [6].For a nonrepeated real root , the corresponding solution in the model 

required  If a real root  is repeated  times, the solutions are degenerate and the linearly independent solutions 

are [7]Complex roots from the habitat signature, eco-endmember model were 

realized as  complex conjugate pairs, . For nonrepeated complex roots, the solutions were 

 When the complex roots were repeated  times, the linearly independent solutions 

were  

Linearly combining solutions of the appropriate LULC types with arbitrary multiplicative ento-endmember, 

capure point, prognosticated constants then rendered the complete solution ( asymptotically iteratable, 

http://mathworld.wolfram.com/SeparationofVariables.html
http://mathworld.wolfram.com/OftheForm.html
http://mathworld.wolfram.com/IntegratingFactor.html
http://mathworld.wolfram.com/Coefficient.html
http://mathworld.wolfram.com/CharacteristicEquation.html
http://mathworld.wolfram.com/CharacteristicEquation.html
http://mathworld.wolfram.com/ComplexNumber.html
http://mathworld.wolfram.com/Root.html
http://mathworld.wolfram.com/Root.html
http://mathworld.wolfram.com/RealNumber.html
http://mathworld.wolfram.com/Root.html
http://mathworld.wolfram.com/RealNumber.html
http://mathworld.wolfram.com/Root.html
http://mathworld.wolfram.com/Root.html
http://mathworld.wolfram.com/ComplexConjugate.html
http://mathworld.wolfram.com/ComplexNumber.html
http://mathworld.wolfram.com/Root.html
http://mathworld.wolfram.com/ComplexNumber.html
http://mathworld.wolfram.com/Root.html
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quantitatively.geo-spectrotemporally interpolative, aquatic, larval habitat, signature frequencies). If initial conditions 

are specified, the constants can be explicitly determined [6]. For example, we considered the sixth-order linear 

ODE  for targeting unknown foci which had the  characteristic 

equation The roots of the malaria, mosquito, geo-spectrotemporal, LULC paradigm was 

1, 2 (three times), and , so the solution 

. The general solution for the 

model was where was the solutions to the linear equations which were  , , 

..., , where  was the particular solution ( i.e.,seasonal, hyperproductive unknown, foci, LULC data). 

We onsidered a first-order ODE in the slightly different form Such an equation 

we assumed to be exact if This statement is equivalent to the requirement that a conservative field exists, so 

that a scalar potential can be defined for an empirically geosampled,  geo-spectrotemporally regressable, 

uncoalesceable, frequency dataset of seasonal, unknown , capture point, aquatic, larval,  habitat  foci) . For an exact 

equation, the  quantitated solution is where  is a constant.A first-order ODE (◇) 

is said to be inexact if [6].For a nonexact equation, the solution may be obtained by defining an integrating 

factor  of (◇) so that the new equation satisfied  

T he following first-order system of ODEs provided an ento-ecoepidemiological, capture point, oviposition-

related, capture point, eco-endmember, LULC signature initial value for each ODE. We modeled a system of first-

order, An. arabiensis, aquatic, larval habitat, capture point, differential equations. We also wrtote the following 

2
nd

 order differential equation as a system of first order, linear,  differential 

equations.   We wrote higher order differential equations as a system 

with a very simple change of larval  habitat variable.  We defined the following two, signature LULC 

function.,  which we subsequently differentiatedin the model. I so doing we obtained 

  Note the use of the differential equation in the second equation. converted 

the initial conditions over to the new functions (i.e., ))Putting all of this together rendered a system 

of differential equations for optimally quanatiating  the empricial geosampeld, datset of eco-georgferemnecable, sub-

myter resolution, grid-stratifiable, LULC signature iterators.. 

We considered the differential equations =  when =0 and =1 which we wrote as the system of 

differential equations where = , = and =0 and =1.This differential system was simulated as follows for 

the geosampled, An. arabiensis habitat data t; 

   time=0; output; 

   time=1; output; 

   time=2; output; 

http://mathworld.wolfram.com/CharacteristicEquation.html
http://mathworld.wolfram.com/CharacteristicEquation.html
http://mathworld.wolfram.com/ConservativeField.html
http://mathworld.wolfram.com/IntegratingFactor.html
http://mathworld.wolfram.com/IntegratingFactor.html
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run; 

proc model capture point data=t ; 

   dependent y 0 z 1; 

   parm b -2 c -4; 

   dert.y = z; 

   dert.z = b * dert.y + c * y; 

   solve y z / dynamic solveprint; 

run; 

 

 

The preceding statements produced the output shown in Table 3. 

 

Table 3 Simulation Results for  the oviposition, An. arabiensis, LULC habitat, forecast, vulnerability, 

endmember, modeling differential system 

 

Simultaneous Simulation 

Observation 1 Missing 2 CC -1.000000 

    Iterations 0     

Solution Values 

y z 

0.000000 1.000000 

Observation 2 Iterations 0 CC 0.000000 ERROR.y 0.000000 

Solution Values 

y z 

0.2516892 -.3169643 

Observation 3 Iterations 0 CC 7.352802 ERROR.y -0.172505 

Solution Values 

y z 

-.0657833 .25751 

The differential, geo-spectrotemporally, geosampled, An. arabienis, aquatic, larval habitat, prognosticative, 

eco-endmember, eco-geoclassfiied, LULC, capture point, ento-ecoepidemiological, LULC variables were distinguished 

by their derivative with respect to time [i.e., (DERT.) prefix]. The differential equations were expressed in normal form.  

The TIME variable was implied with respect to the endmember, geosampled, LULC, capture point, aquatic, 

larval habitat variables for all DERT explanators. We provided initial values for the differential equations in an 

optimizable, sub-meter resolution, capture point dataset. We specified the initial values as 

   proc model An. arabiensis data=t ; 

      dependent y z ; 

      parm b -1 c -4; 

      if ( time=0 ) then 

         do; 

            y=0; 

            z=1; 

         end; 

      else 

         do; 

            dert.y = z; 

            dert.z = b * dert.y + c * y; 

         end; 

      end; 
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      solve y z / dynamic solveprint; 

   run; 

The differential equation for the ento-ecoepidemiological, oviposition, malaria mosquito, LULC, eco-

endmember, geo-spectrotemporal, signature modeling  process was - = . The analytical 

solution to the model was  An ordinary differential equation (ODE) is an equation 

containing a unknown function of one real or complex variable x, its derivatives, and some given functions of x[6]. An 

ordinary differential equation (frequently called an "ODE," "diff eq," or "diffy Q") is an equality involving a function 

and its derivatives [4]. Our  ODE of order  I was initially an equation of the 

form where  was a function of ,  which was  the first derivative with respect 

to , and  and  the th derivative with respect to [7].Nonhomogeneous ordinary differential equations 

can be solved if the general solution to the homogenous version is known, in which case the undetermined coefficients 

method or variation of parameters can be used to find the particular solution[6].The ordinary differential vector 

arthropod, iteratively, interpolative ento-ecoendmember, geo-spectrotemporal, prognosticative LULCm equations  were 

solved exactly in the Wolfram Language using DSolve[eqn, y, x], and numerically 

using NDSolve[eqn, y, x, xmin, xmax ].The  sub-meter resolution, gri-stratfiiable, eco-endmember, ODE of order   

was linear since A linear ODE where  is said to 

be homogeneous[6].  

While there are many general techniques for analytically solving classes of ODEs, the only practical solution 

technique for complicated equations is to use numerical methods (Milne 1970, Jeffreys and Jeffreys 1988). The most 

popular of these is the Runge-Kutta method, but many others have been developed, including the collocation 

method and Galerkin method. A vast amount of research and huge numbers of publications have been devoted to the 

numerical solution of differential equations, both ordinary and partial (PDEs) as a result of their importance in fields as 

diverse as physics, engineering, economics, and electronics.Here the solutions to an ODE satisfied the 

 existence and uniqueness of an sub-meter resolution, grid-stratified dataset of  imaged, capture point, An. arabiensis, 

aquatic, larval habitat, eco-endmember, geo-spectrotemporal, signature, LULC, wavelength properties. The first-order 

ODE was given by for , ...,  /We  let the functions , where , ..., , 

all be defined in a domain  of the - in dimensional space . In so doing, the geosampled, capture point, gridded, 

LULC variables , ..., , . were found to be useful for remotely identifying seasonal, eco-georeferenceable, unknown 

foci by determing estimators associated with known, hyperproductive foci.We let these functions be continuous 

in  and have continuous first partial derivatives  for , ...,  and , ...,  in . . We then 

let  be  . In so doing, there existed a solution given by 

for  (where ) which satisfied  the initial 

conditions Further, the solution was unique, so that if  was a 

second solution of (◇) for  the model , the derivatives satisfied (◇). Subsequently 

  for .was rendered.  Because every th-order ODE can be expressed as a system 

of  first-order ODEs[6], this theorem also may apply to the single th-order OD, sub-meter resolution, eco-

endmember, LULC, signature, grid-stratifiable, forecast, vulnerability, geo-spectrotemporal model for asymptotically 

geo-spectrotemporally targe4ting seasonal, eco-georeferenecable, aquatic, larval habitat, un-geosdampled, foci.. 

An exact first-order ordinary differential equation of the form was then extracted 

where  We noted that an equation of the form (◇) with was  nonexact. An integrating factor is a 

function by which an ordinary differential equation can be multiplied in order to make it integrable[7]. For example, a 

linear, first-order,An. arabiensis, eco-endmember, sub-meter resolution, geo-spectrotemporal, forecast, vulnerability, 

https://en.wikipedia.org/wiki/Ordinary_differential_equation
https://en.wikipedia.org/wiki/Function_of_a_real_variable
http://mathworld.wolfram.com/Derivative.html
http://mathworld.wolfram.com/OftheForm.html
http://mathworld.wolfram.com/OftheForm.html
http://mathworld.wolfram.com/Derivative.html
http://mathworld.wolfram.com/Derivative.html
http://mathworld.wolfram.com/UndeterminedCoefficientsMethod.html
http://mathworld.wolfram.com/UndeterminedCoefficientsMethod.html
http://mathworld.wolfram.com/VariationofParameters.html
http://www.wolfram.com/language/
http://reference.wolfram.com/language/ref/DSolve.html
http://reference.wolfram.com/language/ref/NDSolve.html
http://mathworld.wolfram.com/HomogeneousOrdinaryDifferentialEquation.html
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signature ordinary differential equation of type where  and  are given continuous functions, 

can be made integrable by letting  be a function such that and . In so doing, 

  would be the integrating factor such that multiplying by . In so doing, the 

expression = = could be rendered employing the product rule. 

Integrating both sides with respect to   in the habitat signature, An. arabiensis, oviposition, LULC model for 

asymptotically, optimally, remotely, targeting, eco-georeferenecable, hyperproductive, seasonal foci then may render 

the solution  

 For robustly, parsimoniously quantitating the empirical, regressed dataset of the geosampled, empirical, eco-

georeferenceable,  geo-spectrotemporal, An. arabiensis, aquatic, larval habitat,  capture point, geo-spectrotemporal, 

LULC eco-endmember in (◇),an -dependent variable we,  integrated all the signature frequency 

factosr. If in (◇) was it had an -dependent integrating  factor. If in (◇), but only 

if it had a -dependent integrating factor, for example,.  

 input day conc; 

datalines; 

 

0.0    0.0 

1.0    0.15 

2.0    0.2 

3.0    0.26 

4.0    0.32 

6.0    0.33 

To fit this model in differential form, we employed  the following statements: 

proc model data=Anopheles; 

   parm ku ke; 

 

   dert.conc = ku - ke * conc; 

 

   fit conc / time=day; 

run; 

 

The results from the eco-endmember, capture point, oviposition, LULC estimation is shown  In Table 4. 

 

 

 

 

 

 

 

 

http://mathworld.wolfram.com/First-OrderOrdinaryDifferentialEquation.html
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Table 4 The MODEL Procedure estimation revealing the quantitated, endmember,` LULC  results from the An. 

arabienisis capture point  model output 

 

 

Nonlinear OLS Parameter Estimates 

Parameter Estimate Approx Std Err t Value 

Approx 

Pr > |t| 

ku 0.126743 0.0116 2.33 0.0031 

ke 0.345398 0.2783 3.54 0.0528 

To perform a dynamic estimation of the geosampled, aquatic, larval habitat, signature, LULC ento-endmember 

differential equation, we added the DYNAMIC option to the FIT statement. 

proc model data=Anopheles; 

   parm ku .5 ke .7; 

 

   dert.conc = ku - ke * conc; 

 

   fit conc / time = day dynamic; 

run; 

The equation DERT.CONC was integrated from . The results from this estimation are shown in 

Table 5 . 

 

Table  5. Dynamic estimation results for the oAn.arabiensis, capture point model 

 

The MODEL ProcedureParameter Estimate Approx Std Err t Value 

Approx 

Pr > |t| 

ku 0..376 34 0.3683 6.27 0.0005 

ke 0.522235 0.0364 7.48 0.0080 

A comparison of the endmember sub-meter resolution, oviposition, malaria, mosquito, LULC, orthogonal, 

endmember model data results amongst the seasonal, forecast ,vulnerability model outputs revealed that the two 

dynamic estimations and the analytical estimation rendered  nearly identical results (identical to the default precision). 

The two dynamic capture point, endmember, vector arthropod, LULC model, frequency estimations were identical 

because the initial, capture point, seasonal hyperproductive, eco-georeferenced, aquatic, larval habitat sample  value  

was very close to the initial geosampled  value employed in the first, dynamic, habitat parameter (0).  

Note also that the static model did not require an initial guess for the parameter values. Static estimation, in 

general, is more forgiving of bad initial, grid-stratifiable, time series, orthogonal, LULC endmember values 

(www.esri.com).  preferable form of the regression estimation  for an oviposition, sub-meter resolution, grid-

stratifiable, empricial, geo-spectrotemporal, oviposition, LULC dataset of, capture point, malaria mosquito, 

hyperproductive, eco-georeferenecable, aquatic, larval habitats, may depend mostly on the model and seasonal 

geosampled, ento-ecoepidemiological data[1]. If a very accurate initial, geosampled, aquatic, larval habitat, malaria, 

mosquito, capture point, geo-spectrotemporal endmember, tabulated, LULC geosampled value is known, then a 

dynamic estimation makes sense. If, additionally, the model can be written analytically, then the analytical, endmember, 

LULC estimation may be computationally simpler. If an approximate initial value is known and not modeled as an 

unknown, seasonal, LULC, ecogeoreferenecable, hyperproductive, foci parameter initially, the static estimation may be 

less sensitive to errors in the capture point, aquatic, larval habitat,eco-georeferenecable, geolocations and their density, 

count values prognosticated.  

The form of the error in the endmember oviposition, ento-ecoepidemiological, endmember, LULC model is 

also an important factor in choosing the form of the capture point, forecast, vulnerability, geospectrotemporal, capture 
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point, uncertainty-oriented paradigm. If the error term is additive and independent of previous error, then the dynamic 

mode is appropriate. If, on the other hand, the errors are cumulative in the ento-ecoepidemiological, vector arthropod, 

capture point, aquatic, larval habitat, orthogonal, LULC endmember dataset, a static estimation may be more 

appropriate.  

Auxiliary equations may be parsimoniously useable with various time series, malaria, mosquito, aquatic, larval 

habitat, oviposition, endmemebr, orthogonal, differential equations. These are equations that may need to be satisfied 

with the differential equations at each capture point between each eco-georeferenecable, geosampled, geo-

spectrotemporal, larval, density count value, endmember, prognosticated, seasonal, hyperproductive geolocation. Here, 

the aquatic, larval habitat, LULC data was automatically added to the system, so we did not need to specify them in the 

SOLVE or FIT statement. 

A time induced, endmember, LULC ento-coepidemiological variable was identified in  the An. arabiensis 

aquatic, larval, habitat, ento-ecoepidemiological,oviposition  dataset. The name of the time variable defaulted to TIME 

in the model construction process.  Other geosampled, endmember, LULC variables may be employable in future 

oviposition, forecast, vulnerability, An. arabiensis, capture point, aquatic, larval habitat, mapping applications for 

seasonally targeting eco-georeferenecable, hyperproductive foci as the time variable by specifying the TIME= option in 

the FIT or SOLVE statement. Here, the time intervals for the ento-ecoepidemiological, LULC endmember, capture 

point, orthogonal dataset were not evenly spaced. If the time dependent, predictor variable for the current observation is 

less than the time variable for the previous observation, the integration is restarted [2]. 

We considered the following differential equation  for fitting the sub-meter resolution, endmember, 

LULC, An. arabiensis, aquatic, larval habitat, capture point, geo-spectrotemporal, geosampled oviposition, explanatory 

dataset 

data t2; 

   y=0; time=0; output; 

   y=2; time=1; output; 

   y=3; time=2; output; 

run; 

The problem we were trying to resolve was to  find  the seasonal, hyperproductive, endemic, LULC foci, eco-

georeferenecable, An. arabiensis capture point, geosampled, larval density,frequency, count values for X that satisfied 

the differential equation in SAS ( see Table 6) and the  ento-ecoepidemiological, geo-spectrotemporal, endmember data 

in the  oviposition dataset.  This problem was solved with the following statements: 

proc model data=t2; 

   independent x 0; 

   dependent y; 

   parm a 5; 

   dert.y = a * x; 

   solve x / out=goaldata; 

run; 

 

proc print data=goaldata;  

 

run; 

Table 6 The output from the PROC PRINT  

 

Obs _TYPE_ _MODE_ _ERRORS_ x y time 

1 PREDICT SIMULATE 0 0.0 0 0 

2 PREDICT SIMULATE 0 0.7 2 5 

3 PREDICT SIMULATE 0 -0.3 3 1 
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Note that an initial value of 0 was provided for the x variable in the forecast, vulnerability An. arabiensis, 

capture point, LULC model because it was undetermined at TIME = 0. Hence x was treated as a linear function 

between each geosampled, eco-georeferenecable, LULC, geosampled, geo-spectrotemporal, capture point. We 

optimally integrated the equation   as 

= , = = .This frequency 

signature LULC model reduced to =  (see Table 7). 

Table 7. An  An. arabiensis aquatic, larval habitat observation  reduced  to  

 

 

Employing the BOUNDS and RESTRICT statements, PROC MODEL we computed optimal LULC, An. 

arabienis, aquatic, larval, habitat, sub-meter resolution, grid-stratifiable, eco-endmember, signature, frequency 

estimates subject to equality or inequality constraints on  capture points,  parameter estimates. Equality restrictions were 

written as a vector function: . Inequality restrictions are either active or inactive [6]. When an inequality 

restriction is active, it is treated as an equality restriction [2]. All inactive inequality restrictions in the oviposition, 

capture point, LULC, malaria, mosquito, forecast, vulnerability, signature model was written as a vector function: 

 

The strict inequalities, in the vector arthropod, capture point, LULC, orthogonal, endmember function 

, was transformed into inequalities as , where the tolerance  was controlled by 

the EPSILON= option in the FIT statement which defaulted to . The ith inequality restriction became active 

if  and remained active until its Lagrange multiplier became negative. Lagrange multipliers in the eco-

georeferenecable, capture point, endmember, An. arabiensis, aquatic, larval habitat, LULC, model estimators were 

computed for all the non-redundant equality restrictions and all the active inequality restrictions.  

During the construction process of the ento-ecoepidemiological, explanatory, eco-endmember, LULC, 

oviposition,capture point, signature, frequency, geo-spectrotemporal model we assumed the vector  contained all 

the current active restrictions. The constraint matrix  was .The covariance matrix for the restricted, 

LULC, signature, An. arabiensis, aquatic, larval habitat, geosampled, optimizable, parameterizable estimates which was 

computed  as where  was Hessian or approximation to the Hessian of the objective function 

( ) for OLS. In so doing,   was the last  columns of .  We derived this result from 

an LQ factorization of the constraint matrix, nc which was based on the number of active constraints in the LULC 

forecast, vulnerability, malaria mosquito, model for asymptotically targeting unknown, hyperproductive foci, 
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whence np is the number of geosampled, aquatic, larval habitat, geo-spectrotemporalm ento-endmember, oviposition, 

eco-epidemiological, eco-georeferenceable, signature, frequency, capture point parameters.  

The LQ factorization for the oviposition, ento-ecoepidemiological, forecast, vulnerability, LULC, eco-

endmember, grid-stratified model for asymptotically, optimally, geo-spectrotemporally targeting hyperproductive, 

unknown, An. arabiensis, aquatic, larval habitats was given by  

where L was m-by-m lower triangular, Q was n-by-n orthogonal (or unitary), Q consisted of the first m rows of Q, and 

Q2 was the remaining n - m rows.  This factorization was computed by the routine xGELQF. Q was represented in the 

ento-ecoepidemiological, eco-endmember, signature, LULC model as a product of elementary reflectors; xORGLQ   

 which here generated  all or part of Q, and xORMLQ   (or xUNMLQ  ) which we  post-multiplied with a given 

matrix[i.e., Q
T
 Q

H
(if Q is complex)].  The LQ factorization of A was essentially the same as the QR factorization of A

T
 

(
AH

 if A is complex) in the model renderings since  The LQ factorization was 

then employed to find a minimum norm solution  of an underdetermined  system of linear equations Ax = b where A 

was m-by-n with m < n and had rank m in the An. arabiensis model The solution was given by  

which was be computed by calls to xTRTRS and xORMLQ.   See Gill, Murray, and Wright (1981) for more details on 

LQ factorization.       

 The covariance column summarized the Hessian approximation employed for each capture point, geosampled, 

An. arabiensis, geoclassified, LULC, sub-meter resolution, aquatic, larval habitat, grid-stratified, eco-endmember, 

capture point, in the non-heuristic, geo-spectrotemporal estimation method. In mathematics, the Hessian matrix or 

Hessian is a square matrix of second-order partial derivatives of a scalar-valued function, or scalar field. It describes the 

local curvature of a function of many variables[4]. The covariance matrix for the explicative, LULC endmember, 

regressable, An. arabiensis, aquatic, larval habitat, Lagrange multipliers in the oviposition, aquatic, larval habitat, 

forecast, orthogonal, geoclassifiable,  ento-ecoepidemiological, vulnerability model estimator dataset was computed 

as The p-value reported for a restriction in the model  was computed from a beta distribution rather than 

a t distribution as the numerator and the denominator of the t ratio for the  estimated Lagrange multiplier were not 

independent. The Lagrange multipliers for the active restrictions were quantifiable with the geosampled, oviposition, 

endmember, An. arabiensis, LULC, orthogonal, parameterized estimates. The Lagrange multiplier estimates were then 

computed employing the relationship  where the dimensions of the constraint matrix  was based on the 

number of constraints, and  the number of eco-endmember, eco-georeferenceable, capture point, LULC, geosampled, 

geo-spectrotemporal, oviposition, habitat signature parameters,   which was based on the vector of Lagrange 

multipliers where g was the gradient of the objective function of the final prognosticated dataset of eco-

georeferenceable,  unknown, seasonal, hyperproductive,foci  estimates. 

The final gradient included the effects of the estimated  matrix in the An. arabiesnsis forecast, vulnerability, 

LULC model. For example, in the aquatic, larval habitat, OLS, the final gradient was:  

where r was the residual vector. Note that when nonlinear restrictions were imposed onto the capture point, eco-

endmember, geocassifiable, LULC, frequency, model estimators the convergence measured the geosampled, larval 

density, seasonal, count values greater than one for other geosampled variable iterations. 

In general, the hypothesis tested was written as  where  was a vector-valued function of 

the geosampled, capture point, eco-georeferenced, aquatic, larval habitat, eco-endmember, signature, LULC, 

multivariate, oviposition, parameters  given by the r expressions specified on the TEST statement. We let  be the 

estimate of the covariance matrix of . We also let  be the unconstrained, frequency, endmember estimate 

of  and  be the constrained estimate of  such that . We then let  during the  

quantitation of the un-geosampled, aquatic, larval habitat, seasonal, hyperproductive,  ento-ecoepidemiological, model 
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parameters. We let r be the dimension of  and n be the number of capture point, geosampled LULC observations. 

Using this notation, the statistics for the tests were computed in SAS.  

The Wald test statistic was defined as . The Wald test is not invariant to 

reparameterization of the model (see Gregory and Veall 1985; Gallant 1987,). The choice between a z-value or a t-value 

depends on how the standard error of the coefficients has been calculated [2]. Because the Wald statistic was 

asymptotically distributed as a standard normal distribution in the eco-endmember, An. arabienis, aquatic, larval 

habitat, grid-stratified, sub-meter resolution, prognosticative, LULC, capture point, forecast, vulnerability model, we 

employed the z-score to calculate the p-value. In addition to quantitating the spectral coefficients, we had to estimate the 

residual variance, a t-value instead of the z-value.  

In the OLS, normalized, linear regression of the  ento-ecoepidemiological, geo-spectrotemporal, datset of 

empirically regressed, eco-georeferenecable, sub-meter resolution, geoclassifed, malaria mosquito, seasonal, 

hyperproductive, LULC, eco-endmembers, the variance-covariance frequency, signature, regression, time sreis 

dependnet matrix of the coefficients was Var[β^|X]=σ2(X′X)−1Var⁡[β^|X]=σ2(X′X)−1 where σ2 was the variance of 

the residuals (here unknown had to be estimated from the geosampled endmember data) and X  was  the design 

matrix. The standard errors of the coefficients in the An. arabiensis,  signature, habitat model was the square roots of 

the diagonal elements of the variance-covariance, geo-spectrotemporal, geoclassified, LULC matrix. 

 Because we did know σ2 we had to replace it by its estimate which here was described as 

 σ^2=s2so: seˆ(βj^)=s2(X′X)−1j in the An. arabiensis, model framework Because we had to estimate the variance of the 

frequency, LULC signature, sub-mter resolution residuals to calculate the standard error of the grid-stratified, capture 

point, aquatic, larval habitat coefficients in the eco-endmember, forecast, vulnerability  model, we needed to use a t-

value and the t-distribution. For more information about the theoretical properties of the Wald test, see Phillips and Park 

(1988). 

The Lagrange multiplier test statistic was  where  was the vector of Lagrange 

multipliers from the computation of the restricted, endemic, explanatory, oviposition, An. arabiensis, capture point, 

seasonal, hyperproductive, eco-endmember, signature, LULC estimate . The Lagrange multiplier test statistic was 

equivalent to Rao’s efficient score test statistic: where  was the log-likelihood 

function for the estimation method used for determining geolocations of eco-georeferenceable, sub-meter resolution, 

grid-stratifiable, unknown, seasonal, hyperproductive foci.The likelihood function in the orthogonal, aquatic, larval 

habitat, geo-spectrotemporal, geoclassified, LULC signature,  forecast, vulnerability, geo-spectrotemporal, ento-

ecoepidemiological, endmember model was computed as . 

For OLS and 2SLS, the Lagrange multiplier test statistic in the oviposition ento-ecoepidemiological, signature, 

LULC model was aympoptically optimally computed as: where  was  the 

corresponding objective, frequency, capture point,, geosampled, eco-endmember, capture point, regressable, 

linearizable function, (i.e., value of  a  constrained, eco-georeferenceable, unknown, seasonal, hyperproductive,  

aquatic, larval, habitat, foci, explanatory estimate). The likelihood ratio test statistic 

was where  represented the constrained, capture point, endmember,  grid-stratified, signature, 

frequency LULC estimate of  and  was the concentrated log-likelihood value.For OLS and 2SLS, the likelihood ratio 

test statistic was computed  as: .This capture point, test statistic  was an  

approximation from  whence the frequency, geo-spectrotemporal, immature, density 

count value of  in the geosampled, aquatic, larval habitat,capture point, An. arabiensis, forecast, 

vulnerability model was small( < than 12 immatures). 

http://en.wikipedia.org/wiki/Design_matrix
http://en.wikipedia.org/wiki/Design_matrix
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For each kind of test, under the null hypothesis, the test statistic for optimally quantitating the geo-

spectrotemporal, eco-georeferenecable, An. arabiensis, aquatic, larval habitat, geosampled eco-endmember, signature, 

grid-stratified, LULC data was asymptotically distributed as a  random variable with r degrees of freedom, 

where r was the number of expressions in the TEST statement. The p-values reported for the tests were computed from 

the  distribution and were only asymptotically valid. When both RESTRICT and TEST statements were used in 

the PROC MODEL step, test statistics for summarizing, the geosampled, oviposition, An. arabiensis, eco-endmember, 

LULC, predictive, risk model  estimators was computed by taking into account the constraints imposed by the 

RESTRICT statement. 

We performed   a likelihood ratio test for a compound hypothesis. test a*exp(-k) = 1-k, d = 0 ,/ lr. It is 

important to keep in mind that although individual t tests for each LULC, grid-stratfiied, sub-meter resolution, geo-

spectrotemporal, An. arabienis, geosampled, aquatic larval habitat, seasonal, ecogeoreferenceable, un-geosampled, 

hypeproductive, capture point, endmember, foci covariate was printed by default into the parameter estimates table, 

they were only asymptotically valid for the nonlinear geo-spectrotemporally prognosticated models. In statistics, 

a likelihood ratio test is a statistical test used for comparing the goodness of fit of two statistical models, one of which 

(the null model) is a special case of the other (the alternative model)[2]. The likelihood ratio, and  its logarithm, was 

employed to compute a p-value to decide whether or not to reject the An. arabiensis  null model.When the logarithm of 

the likelihood ratio is used, the statistic is known as a log-likelihood ratio statistic, and the probability distribution of 

this test statistic, assuming that the null model is true, can be approximated employing Wilks’ theorem [see Appendix 

2]. 

  Suppose we have a family of ento-ecoepidemiological, oviposition, eco-endmember, geo-spectrotemporal, 

LULC, capture point, geosampled, signature, malaria, mosquito, hyperproductive, aquatic, larval habitat, endmember 

foci probability density or mass functions f(θ, x) > 0.Furthermore, suppose this vector arthropod data was dependent on 

a d-dimensional  capture point parameter θ which ranged over a parameter space H1. Then theorectically θ could be 

written as (θ1, . . . , θd).In general, however, H1 will not necessarily be a Euclidean space Rd or an open subset of one 

in any oviposition,ento-ecoepidemiological, endmember, sub-meter resolution, forecast, vulnerability, malaria, 

mosquito, LULC probabilistic, geo-spectrotemporal, signature, interpolative, iterative paradigm. It may be a curved 

surface or manifold in a higher-dimensional space, on which θ1, ..., θd could be local coordinates of a seasonal, eco-

georeferenceable, empirical geosampeld dataset of  hyperproductive, aquatic larval, habitat, , LULC eco-

endmember,unknown foci. Here, Pθ would denote the probability distribution of x given θ ∈ H1, and Eθ could be the 

expectation under the distribution, for X1, ..., Xn in the independently distributed Pθ in the vector arthropod model.  

 Let L(θ, x) := log f(θ, x) be the log likelihood function in a malaria, mosquito,  capture point, oviposition, 

endmember,sub-meter resolution, grid-stratifiable, LULC  model.In so doing,  partial derivatives ∂ log f(θ, x)/∂θi  will 

occur at each θ ∈ H1, continuous with respect to θ in the  ento-ecoepidemiologcal model, diagnostic output. In 

statistics, a likelihood function (often simply the likelihood) is a function of the parameters of a statistical model given 

data[2]. Likelihood functions play a key role in statistical inference, in vector arthropod, forecast, vulnerability, geo-

spectrotemrpoal, ento-ecoepidemiological, LULC oviposition, eco-georeferenecable, endmember,capture point,malaria, 

mosquito model especially in methods of estimating a parameter from a set of statistics [1].  

Partial derivatives of the eco-endmember, LULC, oviposition, ento-ecoepidemiological, aquatic, larval habitat 

were defined as derivatives of a function of multiple, unmixed signature  variables especially when all but the variable 

of interest were held fixed during the differentiation. The 

partial derivative  was denoted  for brevity. Partial derivatives were quantitable with respect to multiple, eco-

endmember, oviposition, sub-meter resolution, grid-stratifiable, oviposition,  geosampeld, An. arabiensis,capture point   

LULC variables, as denoted for examples = , = and = For a "nice" two-dimensional (2-D) 

function  (i.e., one for which , , , ,  existed andwere  continuous in the  agro-irrigated, Riceland, 

agro-village, African, geosampled  neighborhood ), then More generally, for "nice" ento-

https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Statistical_test
https://en.wikipedia.org/wiki/Goodness_of_fit
https://en.wikipedia.org/wiki/Statistical_model
https://en.wikipedia.org/wiki/Null_hypothesis
https://en.wikipedia.org/wiki/Alternative_hypothesis
https://en.wikipedia.org/wiki/Logarithm
https://en.wikipedia.org/wiki/P-value
https://en.wikipedia.org/wiki/Probability_distribution
https://en.wikipedia.org/wiki/Likelihood-ratio_test#Wilks.27_theorem
http://mathworld.wolfram.com/Neighborhood.html
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endmember, LULC, prognosticated signature, frequency functions, mixed, partial derivatives had to be equal regardless 

of the order in which the differentiation was performed. We noted that that  was tru in the model 

output. If the continuity requirement for mixed partials was dropped, during the ento-ecoepidemiological, forecast, 

vulnerability model construction for geo-spectrotemporally, aymptotically targeting seasonal, hyperproductive,capture 

point, eco-endmember, LULC processes it may be  possible to construct functions for which mixed 

partials are not equal. An example may be  the function which 

has  and  . Abramowitz and Stegun (1972) give finite difference versions for partial 

derivatives. 

 A partial differential equation (PDE) is an equation involving functions and their partial derivatives; for 

example, the wave equation  A differential equation expressing one or more quantities in 

terms of partial derivatives is called a partial differential equation[8].An oviposition,eco-endmember,  signature, 

malaria, mosquito, ento-ecoepidemiological, sub-meter resolution,  grid-stratifiable, capture point, LULC, aquatic, 

larval habitat,   partial differential equation for asymptotically, geo-spectrotemporally  targeting seasonal, 

hyperproductive, eco-georeferenecable,LULC foci may be solved exactly in the Wolfram 

Language using DSolve[eqn, y, x1, x2 ], and numerically employing 

 NDSolve[eqns, y, x, xmin, xmax , t, tmin, tmax ].In general, partial differential equations are much more difficult to 

solve analytically than ordinary differential equations[7]. The ento-ecoepidemioloigcal, immature, forecast, 

vulnerability, endmember LULC,model may  be solved using a Bäcklund transformation, characteristics, Green's 

function, integral transform, Lax pair, separation of variables, or via quantitation of  finite differences for targeting, 

unknown, seasonal, prolific foci, Fortunately, partial differential equations of second-order are often amenable to 

analytical solution. Such PDEs are of the form Linear second-

order,ento-ecoepidemiological, LULC, endmember PDEs may then  be classified according to the properties of 

the matrix as elliptic, hyperbolic, or parabolic.If Z is a positive definite matrix in a sub-meter resolution, grid-

stratifiable oviposition, eco-georeferenecable, endmember, LULC, prognosticative, geo-spectrotemporal, geosampled 

model ( i.e.,  det (Z)>0) the PDE may be be elliptic. Laplace's equation and Poisson's equation are examples.  

Thereafter boundary conditions may be employable in a sub-mterv reoslition, oviposition, forecast, 

vulnerability, eco-endmember,grid-stratifiable,  LULC  model for rendering the constraint  on , 

where  to determine if it holds in .If det (Z)>0, the PDE is said to be hyperbolic[ see 

7]. The wave equation is an example of a hyperbolic partial differential equation which may help optimally, 

symptotically, geo-spectrotemporally, remotely,  target, seasonal, eco-georeferenceable, hyperproductive, malaria 

mosquito aquatic, larval habitat, capture point foci Initially, boundary conditions may be employable for robustly 

parsimoniously rendering  

and where holds in  in the model output. If the PDE is said to be 

parabolic[4]. A sub-meter resolution, ento-eco-epidemiological, malaria, oviposition, vector arthropod, LULC eco-

endmember, diffusion equations would be an example. Initial-boundary conditions may then be parsimoniously, 

robustly employed to 

give where holds in  in det (Z)> 

the model for optimally, targeting, seasonal, hypeproductive foci. 

Suppose that all the geosampled, sub-meter resolution, endmember, geoclassified, grid-stratifiable, 

explanatory,  eco-georeferenceable,  oviposition LULC,spatial filter,  orthogonal elements in a  grid-stratified,malaria, 

vector arthropod, prognosticative, geo-spectrotemporal, uncertainty-oriented,probabilistic matrix Iij (θ) := Eθ   ∂L(θ, 

x) ∂θi ∂L(θ, x) ∂θj   , i, j = 1, ..., d, are well-defined and finite. Then Iij (θ) would be a symmetric d × d matrix, (i.e, the 
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Fisher information matrix) at θ. It can be easily seen that the ento-ecoepidemiological, eco-endmember, geo-

spectrotemporal, LULC, signature, frequency  model would be nonnegative definite whence targeting unknown 

seasonal, hyperproductive foci, since for any t = (t1, . . . , td), there would be X d i,j=1 Iij (θ)titj = Eθ X d i=1 ti ∂L(θ, x) 

∂θi !2 ≥ 0. It may be assumed that the Fisher information matrix is strictly positive definite in the model for all θ, in 

other words, in the last inequality, “≥ 0” is replacable by “> 0” if at least one ti = 0 in the model output. This will assure 

that the model H1 is truly d-dimensional. For example, if for some i = 1, . . . , d, ∂L(θ, x)/∂θi = 0 for all θ  in an 

oviposition, sub-meter resolution, eco-endmember, malaria, mosquito, forecast, vulnerability,grid-stratified, geo-

spectrotemporal, ento-ecoepidemiological, LULC  model and x, then Iij (θ) = 0 for all j, Iij would not be positive 

definite in the predicted output ( e.g., geolocation of eco-georeferenecable, seasonal, hyperproductive, LULC , 

unknown, aquatic, larval habitat, capture point, iteratively intyerpolated, signature  foci) and the true dimension of 

model H1 would be d − 1 or less. Although not necessary for the given definition of Iij (θ), it may be often convenient 

to assume that second partial derivatives Hij (x, θ) := ∂ 2 log f(θ, x)/∂θi∂θj exist for i, j = 1, ..., d in these model 

circumstances. 

  The Fisher information matrix is important in vector epi-entomological, prognosticative   signature statistics, 

For example, this matrix may render an honest definition of the dimensions of an empirical geosampled, geo-

spectrotemporal, unmixed, oviposition dataset of ento-ecoepidemiological, empirically regressable, 

ecogeoreferenecable, sub-meter resolution, grid-stratifiable, LULC, capture point, An. arabiensis, aquatic, larval 

habitat, prognosticators in a , vulnerability, geo-spectrotemporal, eco-endmember model. Let H0 be an m-dimensional 

subset of H1 for some m < d in the predictive, risk model for asymptotically, remotely targeting eco-georeferenceable, 

seasonal, unknown, prolific foci. It may be assumed then that H0 is “smooth” in the sense that at any hyperproductive, 

seasonal, capture point, ento-ecoepidemiological foci of H0. As such, a malariologist or medical entomologist could  

select  of the geosampled,  An. arabiensis, aquatic, larval habitat, vulnerability, endmember, geo-spectrotemporal, 

LULC, grid-stratified,oviposition parameters, say for example θ1, ..., θm, for which the other d − m parameters are 

twice differentiable functions of θ1, ..., θm. Or, H0 may be given by way of an m-dimensional,  capture point, 

geosampled, eco- endmember, signature dataset of  LULC parameters φ = (φ1, ..., φm) with a mapping φ → θ(φ) of H0 

into H1, such that the geo-spectrotemporal, eco-georeferenceable, malaria, mosquito, orthogonal, endmember, 

forecasted, partial derivatives ∂/∂φj and ∂ 2/∂φj∂φk of f(θ(φ), x) exist in the model outpt and have the same  endmember 

properties with respect to φ as were assumed with respect to θ.  

  Consider the family of all spectrotemporal, normal distributions N(µ, σ2 ), with d = 2 as rendered from  a 

vector arthropod, oviposition, forecast, vulnerability, endmember, sub-meter resolution, grid-stratified, eco-

georeferenecable, An. arabiensis,  LULC model. Here µ can be any real, geosampled, aquatic, larval habitat, capture 

point, hyperproductive, eco-georeferenceable, ento-eco-epidemiological foci and σ or σ 2 any number > 0. As such, 

thesubfamily with µ = 0 will then have dimension m=1. In a trinomial distribution, there may be n independent 

experimental trials with multiple possible, forecast, vulnerability, capture point, outcomes, having respective 

endmember, hyperproductive, eco-georefereneceable, aquatic, larval, habitat malaria, mosquito, oviposition, LULC 

endmember, geo-spectrotemporal probabilities (p1, p2,  and p3) occurring on each trial. Then pj ≥ 0 and p1 + p2 + p3 = 

1. Suppose a malariologist or medical entomologist assumes that pj > 0 for each j in the habitat, signature, LULC 

model.This parameter space H1 may have a dimension d = 2. He or she may then take for example, p1 and p2 as eco-

georeferenecable, capture point, seasonal, hyperproductive, LULC, eco-endmember, foci coordinates, where p3 ≡ 1 − 

p1 − p2. One lower-dimensional submodel H0 is the family of Hardy–Weinberg equilibrium distributions in which for 

some p with 0 < p < 1 and q ≡ 1 − p, p1 = p 2 , p2 = 2pq, and p3 = q 2[2] . Hence, in the oviposition, eco-endmember, 

prognosticative, LULC model φ = φ1 = p would be the optimal, geoclassifiable, capture point, aquatic,malaria 

mosquito,  larval habitat geosampled unknown parameter for H0, which may have dimension m = 1, and θ(p) = {θj (p)} 

3 j=1 = {pj (p)} 3 j=1 = (p 2 , 2pq, q2 ). So the An. arabiensis, aquatic, larval habitat, eco-endmember, oviposition, 

orthogonal, LULC, signature,  risk   mapping θ(·)would be nonlinear (quadratic), but the derivatives with respect to p of 

all orders would  exist and would be  continuous in the model output whence optimally seasonally asymptotically, 

targeting unknown, seasonal, hyperproductive, eco-georeferenecable,endmember foci. 

            A malariologist or a medical entomologist may assume that an empirical, geospectrotemporal, geosampled, 

regressable ento-ecoepidemiological, oviposition, dataset of eco-georeferenecable, grid-stratified, geoclassified, LULC, 

sub-meter resolution, malaria, mosquito, capture point, aquatic, larval, habitat observations X1, . . . , Xn are 

independently distributed with likelihood function f(θ, x) for some θ ∈ H1. A malariologist or medical entomologist 
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may then want to test the hypothesis that θ ∈ H0. This can be conducted by letting L(θ) = Πn j=1f(θ, Xj ) be the 

likelihood function in the ento-ecoepidemiological, forecast, vulnerability, LULC model. Let MLd be the maximum of 

the likelihood for θ in H1, in other words. In so doing, MLd = L( ˆθd) where θbd would be  the maximum likelihood 

estimate of θ in H1, provided it exists in regression space. Let MLm be, likewise, the maximum of the likelihood for θ 

in H0 in the forecast, vulnerability, endmember, oviposition, LULC, An. arabiensis, risk model. Then MLm ≤ MLd 

would exist in the model renderings because H0 ⊂ H1. Let Λ be the likelihood ratio, Λ = MLm/MLd, so that 0 < Λ ≤ 1. 

The malariologist or medical entomologist could then reject H0 if Λ is small, or sufficiently less than 1, depending on n, 

but not reject it if Λ is close to 1 in the model output ( seasonal, targeted, unknown, hyperproductive, aquatic, larval 

habitat, eco-endmember foci).  

S. S. Wilks in 1938 proposed the following test: let W = −2 log Λ, so that 0 ≤ W < ∞. Wilks found that if the 

hypothesis H0 is true, then the distribution of W converges as n → ∞ to a χ 2 distribution with d−m degrees of freedom, 

which may not be dependent on true θ = θ0 ∈ H0 values. Thus, H0 would be rejected in a signature An. arabeinsis, sub-

meter resolution, eco-endmember, signature, LULC model  if W is too large in terms of the tabulated χ 2 d−m 

distribution rendered from the  ento-ecoepidemiological, prognosticative, malaria, mosquito, orthogonal, oviposition, 

endmember, non-linear vector arthropod model. In a multinomial, trinomial, capture point, seasonal hyperproductive, 

unknown variable tabulated probability distribution for which the jth outcome has probability pj, the jth outcome may 

be Xj times in n trials. Hence since Xj has a binomial (n, pj) distribution[2], the maximum likelihood estimate of pj  in 

an An. arabiensis, endmember, sub-meter resolution, LULC, predictive, oviposition,  risk model  for asymptotically  

targeting, capture point, eco-georeferenceable, seasonal, hyperproductive, aquatic, larval habitat foci would be  Xj/n for 

each j. For the Hardy–Weinberg, aquatic, larval habitat, quantitated, LULC endmember, An. arabiensis, submodel of 

the trinomial, the maximum likelihood estimate of p may be  easy to tabulate: the likelihood function may be defined as 

(p2 ) X1 (2pq) X2 (q 2 ) X3 times factors not depending on p, or p 2X1+X2 q X2+2X3 times such factors. Such a 

geosampled, geo-spectrotemporal, malaria, mosquito, ento-ecoepidemiological, eco-endmember, signature, LULC, 

forecast, vulnerability, capture point model may have the form of a binomial likelihood function for success probability 

p and 2n trials. So it is theoretically possible to find the likelihood ratio and Wilks statistic Λ and W respectively in 

such a model for optimally, asymptotically, remotely, targeting unknown, seasonal, eco-georeferenceable, 

hyperproductive, aquatic, larval habitat, eco-endmember, geo-spectrotemporal foci  

Recall in our previous malaria, eco-endmember, sub-meter resolution, oviposition, LULC, predictive, risk 

model example where H1 was the set of all normal distributions with d = 2, and H0 was µ = 0, having dimension m = 1. 

In this case another test of H0 could be optimally conducted whence the 0 is outside the 1 − α confidence interval for µ 

in the model output. Question: is this test, or the Wilks test, preferable in this case when optimally quantitating an 

empirical geosampled, geospectrotemporal, eco-endmember, signature, iteratable, interpolative, LULC, oviposition 

dataset of regressable,  geosampled, sub-meter resolution, grid-stratifiable, explanators? The Wilks test is only 

applicable when n is large and with an approximation, whereas the test based on a confidence interval would employ 

the t distribution which is exact for any n ≥ 2[4]. The likelihood ratio test of a multinomial hypothesis for k categories a 

special case of Wilks’s test with d = k – 1[6].  

The Wilks’s statistic may render an asymptotic distribution for any seasonal, eco-georeferenecable, regressed, 

geosampled, sub-meter resolution, grid-stratifiable, unknown, malaria, mosquito, vulnerability  mapped dataset of 

signature frequency variables associated with a targeted  hyperproductive,eco-endmember,unknown,  LULC, seasonal, 

capture point,aquatic, larval habitats if H0 is true. Wilks’s statistic (n, p, q), also sometimes denoted by Un.p,q, is 

widely used for various statistical tests in multivariate analysis since it, supposedly, plays the same role as the Fisher–

Snedecor F1,2 in univariate statistics. The distribution of Wilks’s statistic is, however, difficult to track, because, its 

density lacks a closed form expression, except for some simple values of its parameters. Derived distributions, such as 

geo-spectrotemporal, geosampled, signature, frequency, LULC aquatic, larval habitat, ento-ecoepidemiological, un-

geosampled,  eco-georeferenecable,  capture point, oviposition, malaria, mosquito, prognosticative, sub-meter 

resolution, aquatic, larval habitat, vulnerability  forecasts overlaid on grid-stratified, geoclassified, endmember densities 

may be based on  the product and ratio of two independent Wilks’s statistics which  may  be computed in SAS.  

Here we also examined asymptotic distributions of the canonical correlations 

between x1;q×1 and x2;p×1 with q≤p, based on a sample of size of N=n+1 in the forecast, vulnerability, ento-
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ecoepidemiological,sub-meter resolution, grid-stratified, endmember ,LULC model for asymptotically, remotely 

targeting seasonal, hyperproductive, eco-georeferenceable, An. araibiensis,capture points.  The asymptotic distributions 

of the canonical, malaria, mosquito, vector arthropod, aquatic, larval habitat geosampled, geo-spectrotemporal 

correlations were studied extensively when the dimensions q and p were fixed. However, these approximations worsed 

when q or p was large in comparison to n. To overcome this weakness,we propose employing first derived, asymptotic 

distributions of the canonicalized, eco-endmember, signature, frequency, sub-mter resolution, grid-stratfiable, 

geoclassfiiable,   LULC  correlations under a high-dimensional framework such that q is 

fixed, m=n−p→∞ and c=p/n→c0∈[0,1).If a malariologist or medical entomologist assumes that x1 and x2 has a 

joint (q+p)-variate normal distribution then an extended Fisher’s z-transformation may be  proposed for targeting 

seasonal, hypeprpoductive, eco-georeferenecable, sub-meter resolution, grid-stratified, unknown, aquatic, larval habitat, 

capture point foci. The asymptotic distributions may be improved further by deriving their asymptotic expansions. 

Numerical simulations may reveal that  eco-endmember, geo-spectrotemporal, geosampled, grid-stratified, optimizable, 

LULC approximations asymptotically,target, eco-georeferenceable, seasonal, hyperproductive, unknown, 

An.arabiensis, aquatic, larval habitats with more accuracy than the classical eco-endmember, signature, iteratively 

interpolatable, LULC, orthogonal approximations for a large range of p,q, and n and for optimally quanitating 

population canonical correlations. 

Various approaches have been suggested in the literature to approximate the density of (n, p, q). For example, 

Ulyanov, Wakakiand Fujikoshi [2006] give the Berry–Esseen bound for high dimensional asymptotic approximation of 

(n, p, q). In probability theory, the central limit theorem states that, under certain circumstances, the probability 

distribution of the scaled mean of a random sample converges to a normal distribution as the sample size increases to 

infinity[2]. Under stronger assumptions, the Berry–Esseen theorem, or Berry–Esseen inequality, renders a more 

quantitative result, as it also specifies the rate at which this convergence takes place by giving a bound on the maximal 

error of approximation between the normal distribution and the true distribution of the scaled sample mean. The 

approximation may be  robustly parsimoniously measured in an eco-georeferenecable, grid-stratified, geo-classified, 

geo-spectrotemporal, geosampled, ento--epidemiological, sub-meter resolution, eco-endmember,signature, frequency, 

LULC, malaria mosquito, oviposition, vulnerability, ento-ecoepidemiological,  forecast, model by employing  the 

Kolmogorov–Smirnov distance. 

In statistics, the Kolmogorov–Smirnov test (K–S test or KS test) is a nonparametric test of the equality of 

continuous, one-dimensional probability distributions  which may be employable to compare a sample in an eco-

georeferenceable,  geo-spectrotemporal, aquatic, larval habitat vector arthropod ( riceland,oviposition,  An. 

arabiensis,seasonal, hyperproductive, geo-spectrotemporal, geosampled foci ), sub-meter resolution, grid-stratifiable,  

geoclassifiable, LULC, endmember model with a reference probability distribution (one-sample K–S test), or to 

compare two samples (two-sample K–S test).  The Kolmogorov–Smirnov statistic quantifies distances between 

empirical distribution function of a sample geosampled, dataset and the cumulative distribution function of the 

reference distribution, or between the empirical distribution functions of two datasets[2]. In probability theory and 

statistics, the CDF of a real-valued random variableX (e.g., sub-meter resolution, eco-georeferenceable, capture point, 

aquatic, larval habitat, grid-stratified, endmember, LULC, eco-georeferenecable, hyperproductive foci) or just 

distribution function of X, evaluated at x, is the probability that X will take a value less than or equal to x[1]. The null 

distribution of this statistic may be calculable under the null hypothesis that the sample is drawn from the reference 

distribution (in the one-sample case) or that the samples are drawn from the same distribution (in the two-sample case). 

In each case, the multivariate, vector arthropod, aquatic, larval habitat,  capture point, uncertainty-oriented,probabilistic,  

eco-endmember, LULC signature distributions for a seasonal, eco-georeferenecable, unknown prognosticated, capture 

point,  hyperproductive foci may be considered under the null hypothesis based on  continuous distributions which   

may be  otherwise unrestricted. The two-sample K–S test is one of the most useful and general nonparametric methods 

for comparing two samples, as it is sensitive to differences in both location and shape of the empirical CDFs of the two 

samples [2]. 

The Kolmogorov–Smirnov test can be modified to serve as a goodness of fit test. The goodness of fit of a 

statistical model describes how well it fits a set of observations [2]. Measures of goodness of fit typically can 

summarize the discrepancy between observed, sub-meter resolution, grid-stratifiable, geoclassifiable, eco-endmember 

malaria, mosquito, aquatic, larval habitat, capture point,  oviposition, geo-spectrotemporal geosampled,LULC siganture, 

iterative interpolative values and the values expected under an eco-georeferenceable, seasonal, hyperproductive 
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reference, sub-meter resolution, LULC model in question. Such measures can be used in statistical hypothesis testing, 

(e.g. to quantitate  for normality of capture point target residuals, to test) whether two seasonal, eco-georeferenceable,  

unknown, forecasted, vector arthropod, aquatic, larval,  habitat samples are drawn from identical distributions (e.g., 

Kolmogorov–Smirnov tests) for determining ungeosampled,  hyperproductive, An. arabeinsis, geo-spectrotemporal, 

eco-endmember, signature  foci, or whether outcome immature density  frequencies follow a specified distribution (e.g.,  

Pearson's chi-squared test). In the analysis of variance, one of the components into which the variance may be 

partitioned which may be due to a lack-of-fit sum of squares.  In statistics, a sum of squares due to lack of fit, or more 

commonly a lack-of-fit sum of squares, is one of the components of a partition of the sum of squares in an analysis of 

variance, used in the numerator in an F-test of the null hypothesis that can state  that a proposed model fits well[2]. 

In the special case of testing for normality of the distribution as rendered from a sub-meter resolution, eco-

endmember, LULC dataset of empricially regressable, eco-georeferenceable, oviposition, geo-spectrotemporal, malaria, 

mosquito, aquatic, larval habitat, hyperproductive, oviposition, capture point samples may be standardizable and as 

usch comparable with a standard normal distribution of non-prolific, seasonal, foci.  This may be equivalent to setting 

the mean and variance of the reference distribution equal to the geosampled, geo-spectrotemporal, immature, capture 

point, density, frequency count estimates to define the specific reference, siganture, distribution, endmember LULC 

changes in the null distribution of the test statistic. Various studies have found that, even in this corrected form, the test 

is less powerful for testing normality than the Shapiro–Wilk test or Anderson–Darling test[see 8 and 9]. However, these 

other tests have their own disadvantages. For example, the Shapiro–Wilk test is known not to work well in samples with 

many identical values. 

 Here, explanatory, independent, malaria, mosquito, aquatic, larval habitat geo-spectrotemporal, geosampled, 

eco-endmember, LULC, sub-meter resolution, capture point samples, the convergence rate was n
−1/2

, where n was the 

sample size, and the constant was estimated in terms of the third absolute normalized moments. In mathematics, a 

moment is a specific quantitative measure, employed in both mechanics and statistics, of the shape of a set of points. If 

the points represent mass, then the zeroth moment is the total mass, the first moment divided by the total mass is the 

center of mass, and the second moment is the rotational inertia[3]. If the points represent probability density such as in 

our  An. arabiensis, aquatic, larval habitat, capture point, forecast, vulnerability model, then the zeroth moment is the 

total probability (i.e. one), the first moment is the mean, the second central moment is the variance, the third central 

moment is the skewness, and the fourth central moment (with normalization and shift) is the  quantizable kurtosis. 

In probability theory and statistics, kurtosis is a measure of the "tailedness" of the probability distribution of a 

real-valued, random, orthogonal, geosampled variable ( e.g., geo-spectrotemporal, eco-georeferenceable,  sub-meter 

resolution,  vector arthropod, aquatic, larval habitat, capture point, seasonal, hypeproductive, frequency, larval, density, 

count).  In a similar way to the concept of skewness, kurtosis can be  a descriptor of the shape of an ento-

ecoepidemiological, endmember, LULC, probability distribution and, just as for skewness, there are different ways of 

quantifying it for constructing a theoretical or field operational, prognosticative,  malaria, mosquito, capture point, 

model and corresponding the observational, output ( e.g., seasonally eco-georeferenceable, unknown, targeted, 

hyperproductive, capture point)  to a sample from a sesonal, aquatic,larval habitat, geosampled  population. Depending 

on the particular measure of kurtosis that is employed for quantatiting the uncertainty in the ento-ecoepidemiological, 

forecast, vulnerability, endmember, LULC signature model there are various interpretations of kurtosis, and of how 

particular measures should be interpreted in SAS. 

The standard measure of kurtosis in the eco-georeferenecable, sub-meter resolution, An. arabiensis, 

geoclassifiable, oviposition, LULC, eco-endmember model was based on a scaled version of the fourth moment of the  

geo-spectrotemporal, geosampled,unmixed, signature data and immature, geosampled, vector arthropod, aquatic, larval, 

habitat population. This number was related to the tails of the distribution, not its peak. Higher kurtosis  in an 

oviposition, sub-meter resolution, grid-stratifiable, LULC, endmember model for aymptotically targeting seasonal, eco-

georeferenecable, hyperproductive, aquatic, larval habitat, capture point foci may be the result of infrequent extreme 

deviations (or outliers) in an empricial geosampled oviposition, malaria, mosquito, geosampled, empirical dataset of 

parameterizable spectral paramaters as opposed to frequent modestly sized deviations. 
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The kurtosis of any univariate normal distribution is 3[2]. It is common to compare the kurtosis of a 

distribution to this value. Distributions with kurtosis less than 3 would be platykurtic in an eco-georeferenecable, sub-

meter resolution, geoclassifiable, An. arabiensis, grid-,stratifiable, LULC,  oviposition, forecast, vulnerability model  

although this does not imply the distribution is "flat-topped" as sometimes reported in literature. Rather, it means the 

distribution produces fewer and less extreme outliers than does the normalized, geo-spectrotemporal, malaria, vector 

arthropod, geosampled, capture point,  eco-endmember, signature distributions. An example of a platykurtic distribution 

is the uniform distribution which does not produce outliers [2].  

Malaria mosquito, oviposition, endmember, LULC, model probability distributions with kurtosis greater than 3 

would be leptokurtic. An example of a leptokurtic distribution in an ento-ecoepidemiological, eco-georeferenecable, 

geo-spectrotemporal, oviposition, sub-meter resolution, grid-stratifiable, An. arabiensis, LULC, aquatic, larval habitat, 

oviposition, endmember,capture point  model,  is the Laplace distribution.This distribution which has tails that 

asymptotically approach zero more slowly than a Gaussian, produces more outliers than the normal distribution. It is 

also common practice to use an adjusted version of Pearson's kurtosis, the excess kurtosis, which is the kurtosis minus 

3, to provide the comparison to the normal distribution [4]. Alternative measures of kurtosis are: the L-kurtosis, which 

is a scaled version of the fourth L-moment; measures based on four population or sample quantiles. These are 

analogous to the alternative measures of skewness that are not based on ordinary moments.  

 An ento-ecogeoreferenecable, geo-spectrotemporal, An. arabeinsis, oviposition, capture point, LULC, 

signature, eco-endmember, sub-meter resolution, geoclassifiable, grid-stratifiable, forecast, vulnerability, signature  

model for asymptotically targteing seasonal, eco-georeferenecable, hyperproductive aquatic, larval, habitat foci may be  

established such that (n, p, q) has the same density as a product of independent univariate beta variables.In  Consul 

[1967], for example, the author employed Meijer functions to express that density in a theoretical context, when simple 

values of the parameters are considered.  In this article, we first established the density of the general (n, p, q) under a 

closed form expression, employing H-function probability density which resulted in drawing the aquatic, larval habitat, 

geosampled, endmember, capture point, eco-georefereneceable, LULC densities using MAPLE. Percentiles of this 

distribution were obtained for unknown, seasonal, hypeprproductive, An. arabiensis, aquatic, larval habitats forecasts 

accurately employing the exact distribution which served as a reference to which all other capture point approximate 

distributions were compared. Considering two explanatorial, geosampled,   geo-spectrotemporal, independent, 

generalized Wilks’s statistics 1(n1, p1, q1) and 2 (n2, p2, q2), where  capture point, seasonal,  hypeproductive,  aquatic, 

larval habitat, eco-endmember, sub-meter resolution signature frequencies may take LULC,  non-integer values  can 

establish expressions of prognosticated immature densities of P = 1,2, and R = 1/2 in closed form. The likelihood ratio 

statistic intimately related to Wilks’s statistic may then be considered, in different contexts ( e.g., seasonal, targeting  of 

unknown, malaria mosquito, hyperproductive foci).  

 

Wilks’s statistic is often compared to the Fisher–Snedecor variable F1,2 in univariate statistics but it should 

rather be compared to the standard beta variable and to the matrix variate beta, in matrix variate, ento-

ecoepidemiological,  sub-meter resolution, grid-stratifiable,  malaria ,mosquito, geo-spectrotemporal, LULC, 

prognosticative, eco-endmember, prognosticative, vulnerability  analysis when  optimally asymptotically remotely 

targeting seasonal, eco-georeferenecable, hypeproductive foci.  The determinant of the matrix beta variate, of both types 

I 

and II may also be studied in these models. An alternate form of the generalizedWilks’s statistic, may be found to be 

more closely related to F1,2 in such forecast, vulnerability, vector, arthropod models. 

Distinguishing between two explanatory, eco-georeferenceable, eco-endmember, sub-meter resolution, grid-

stratifiable, LULC,capture point, aquatic, larval habitat, oviposition, forecast, vulnerability  models, each of which has 

no unknown parameters, may require the use of the likelihood ratio test which may  be justifiable by the Neyman–

Pearson lemma. In so doing, a malariologist or medical entomologist may demonstrate that such a test has the 

highest power among all competitors. If there exists a critical region of size and a nonnegative constant such that 

for a multiple, seasonal, eco-georeferenceable, An.arabiensis, LULC, hyperproductive,capture point, 

geo-spectrotemporal,ento-ecoepidemiological,oviposition dataset in and  not in , then would be  
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the  best critical region of size  in the entomological, vector arthropod, geosampled, ento-endmember, 

empirical,LULC, non-heuristically optimizable, geo-spectrotemporal dataset.  

Employing a Chebyshev polynomial of the first kind  we were able 

to,define = =  in the An. arabiensis, eco-

endmember,oviposition, signature, LULC,operational model for optimally, aymptotically  targeting seasonal, eco-

georeferenecable, hyperproductive,capture point, aquatic, larval habitat foci.Then  It was 

exact for the  zeros of  in the ento-ecoepidemiological, LULC, geosampled, empirical dataset.This type of 

approximation is important  for malaria mosquito,prognosticative,vulnerability endmember, sub-meter resolution, risk  

mapping because, when truncated, the error in the model would spread smoothly over . Our  Chebyshev 

approximation formula was very close to a minimax polygon  (an approximating polynomial which has the smallest 

maximum deviation from the true function).  

Optimization of an eco-endmember, geo-spectrotemporal, ento-ecoepidmeiological, sub-meter resolution, grid-

stratifiable, orthogonal, LULC, capture point, malaria, mosquito, aquatic, larval habitat, oviposition, forecast, 

vulnerability model for satellite applications is often performed using an iterative process that adjusts coefficients of the 

surface expansion based on some norm of the far-field directivity[1]. Traditionally, this involves sampling the far-field, 

directivity, LULC, endmember patterns on a fixed uniform stratified grid within the specification polygon (see 

Sorensen, S.B., 1993). Here we presented a procedure that optimized an ento-ecoepidemiological, oviposition, LULC, 

grid-stratifiable, eco-endmember, sub-meter resolution LULC dataset for asymptotically targeting, unknown, 

ecogeoreferenceable, An. arabiensis, capture point, aquatic, larval habitats in a riceland African agro-ecosystem 

employing the minimax criteria. The new procedure exploited the filtering aspects of the geosampled larval habitat, 

seasonal ric-cycle LULC pattern in order to obtain improved results from the optimization exercise. The specification 

coverage polygon was analogous to the mask of a harmonic filter.  

 

We replaced the capture point, geoclassified, grid-stratified, LULC An. arabiensis, eco-georeferenced eco-

endmember, geo-spectrotemporal polygons by a sequence of contracting polygons beginning with a circumscribing 

ellipse and ending with the specification polygon. The problem for targeting seasonal, hyperproductive foci at the agro-

irrigated study site was solved essentially by a sequence of optimizations. We also employed an adaptive grid method 

which more efficiently defined the endmember LULC sample pattern by recognizing the filtering aspects of the habitat, 

capture point shape. The method achieved significantly improved results at the cost of an extremely slow convergence. 

It is anticipated that for many commercial, seasonal, vector, arthropod, malaria, mosquito, aquatic, larval habitat, 

control applications this cost can be justified, given the significant improvement in predictive power that is possible in 

these vulnerability, porognostictaive paradigms. 

  

The Chebyshev polynomials of the first kind generated an eco-georeferenecable, endmember, geo-

spectrotemporal, geoclassifiable, LULC, grid-stratified, oviposition, sub-meter resolution,  explanatory, unmixed 

dataset of  orthogonal capture point,  An. arabiensis, aquatic, larval habitat,  endmember polynomials. The vector 

arthropod,capture point, orthogonal polynomials were revealed in SAS  as a class of polynomials   defined over 

a range  that follwed an orthogonality relation where   was  a weighting 

function and  was the Kronecker delta. In mathematics, the Kronecker delta is a function of two variables, usually 

just positive integers where the Kronecker delta δij is a piecewise function of variables i and j [2].  

The simplest interpretation of the Kronecker delta in the eco-endmember, LULC, prognosticative, geo-

spectrotemporal, malaria, mosquito, sub-resolution, forecast, vulnerability  model  was the discrete version of the delta 
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function which we defined by  The Kronecker delta was implemented in the Wolfram Language 

as KroneckerDelta[i, j], employing  a generalized form KroneckerDelta[i, j, ...] that returned 1 if all arguments were 

equal and 0 in the, vulnerability, time series, malaria model output It had the contour integral representation 

whence was a contour corresponding to the unit circle and and were the  integers.  In 

three-space, the Kronecker delta of the An. arabiensis, aquatic, larval habitat, ento-ecoepidemiological, eco-

georeferenecable, capture point, oviposition, LULC, geo-spectrotemporal  signmature, frequency model satisfied the 

identities , , and  based on the orthogonal 

polynomials  where  ( see Table 8).  

Table 7. Orthogonal eco-endmember An.arabiensis, larval habitat polynomials  where  was the weighting 

function and   

Polynomial interval 
  

Chebyshev polynomial of the first kind  

 

 

 

Chebyshev polynomial of the second kind  

 

 

 

Gegenbauer polynomial  

 

 

 

Hermite polynomial  

 

 
 

Jacobi polynomial  

 

 

 

Laguerre polynomial  

  

1 

generalized Laguerre polynomial 
 

 

 

Legendre polynomial  

 

1 
 

The roots of the orthogonal, An. arabiensis, capture point, geo-spectrotemporal, grid-stratified, signature, 

LULC polynomials possessed many useful properties for optimally targeting, hypeproductive, aquatic, larval habitat, 

eco-georeferenecable, endmember foci For example we let  be 

the roots of  with  and  in the malaria mosquito model. In so doing, then each interval  

in the model for , 1, ...,  contained exactly one root of . Between two roots of  there was at least 

one root of  for  in the LULC, model output.  

We then let  be an arbitrary real constant in the ento-ecoepidemiological, eco-endmember, An. arabiensis, 

geo-spectrotemporal model. In so doing, a capture point, grid-stratifiable, geo-spectrotemporal, eco-georeferenecable, 

oviposition, geoclassified, LULC polynomial (i.e, ) had  distinct real roots. If  ( ), 

these roots lay in the interior of  of  the model, with the exception of the greatest (least) root which lay 
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in  only for . An eco-endmember, geo-spectrotemporal, geoclassifiable, LULC, 

variance decomposition was performed which subsequently revealed partial fractions held in 

the model residual, parameterized derivatives whence    

the roots of  and = =  occurred in the output. 

Another interesting property in the ento-ecoepidemiological, malaria, mosquito, geo-spectrotemporal, 

oviposition, LULC model was obtained by letting  be the orthonormal set of grid-stratified, eco-endmember, 

signature, frequency, capture point, geosampled polynomials  associated with the distribution  on . Then 

the convergents   of the continued fraction was 

robustly, parsimoniously  given by = = whence the capture point 

model residuals were = where , 1, ... and  Further, the roots of the, 

vulnerability, prognosticative, geo- orthogonal,  endmember, malaria, capture point, eco-georeferenecable, LULC 

polynomials  was associated with the distribution  on the interval  which were   distinct and were 

geolocated in the interior of the interval . 

Subsequently, the  prognosticative, Chebyshev, differential, aquatic, larval habitat, empirical LULC, eco-

endmember, sub-meter resolution, signature, grid-stratified dataset of oviposition, geo-spectrotemporal, eco-

georeferenecable, An. arabiensis, aquatic,larval habitat, model, frequency estimatators  were used as an approximation 

to a non-linear,least squares fit, For nonlinear least squares fitting to a number of unknown parameters, linear least 

squares fitting may be applicable iteratively to a linearized form of the function in an oviposition, endmember, geo-

spectrotemporal, eco-georeferenecable, An. arabiensis, aquatic,larval habitat, sub-meter resolution, LULC  model,until 

convergence is achieved[1]. It may be possible to linearize a nonlinear capture point, geo-spectrotemporal, orthogonal, 

eco-endmember, signature, LULC function at the outset and still use linear methods for determining unknown, prolific,  

aquatic, larval habitat, fit parameters without resorting to iterative procedures. This approach may violate the implicit 

assumption that the distribution of errors is normal, but may still render acceptable results (e.g., field-verifiable, eco-

georeferenecable, An. arabiensis, aquatic, larval habitat seasonal, hyperproductive, geosampled, LULC, sub-meter 

resolution, foci prognosticators) employing normalized equations. Depending on the type of fit and initial parameters 

chosen, the nonlinear endmember, orthogonal, LULC fit may have good or poor convergence properties in these 

probabilistic, geo-spectrotemporal, vector arthropod, oviposition paradigms. If uncertainties (in the most general case, 

error ellipses) are given for the capture points, the ento-ecoepidemiological, vector arthropod, model ouput may be 

weighted differently in order to optimally render the hyperproductive, aquatic, larval habitat, unknown capture points 

and their weights.  

Vertical least squares fitting proceeds may geolocate the sum of the squares of the vertical deviations for a 

set of  malaria, mosquito, geosampled, geo-spectrotemporal, eco-georeferenceable, unknown, seasonal, 

hyperproductive, An. arabiensis, geosampled, capture point, aquatic, larval habitats employing 

  from a function . Note that this procedure will not minimize the actual 

deviations from the regression line (which should be measured perpendicular to the given function). In addition, 

although the unsquared sum of habitat distances might seem a more appropriate quantity to minimize in an eco-

georeferenecable, ento-ecoepidemiological, oviposition, geo-spectrotemporal, sub-mter resolution, grid-stratifiable, An. 

arabiensis, aquatic, larval habitat, vulnerability model for asymptotically, geo-spectrotemporally, remotely,  targeting 

seasonal, hyperproductive, eco-georeferenecable, eco-endmember  signature, iteratable or interpolative foci,employing   
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the absolute value, the output  may have discontinuous, non-orthogonal, fractionalized, habitat derivatives which cannot 

be treated analytically. The square deviations from each geosampled, geo-spectrotemproal, LULC, capture point could 

however be summed, and the resulting residual could be minimized to find the best fit line. This procedure may result 

in optimally outlying, seasonal, hyperproductive, eco-georeferenecable, LULC endmember, oviposition, capture points 

which may subsequently render disproportionately large weighting.  The condition for to be a minimum in such a 

model is that for , ..., . For a linear fit,  may geosampeld, capture point, seasonal 

LULC endmeber variables may  be expressable. Hence, the expressions, 

, , and  iterations 

could lead to the equations = and = for aympoptically targeting seasonal,  

eco-georeferenceable, eco-endmember, sub-meter resolution, grid-stratifiable, signature, LULC,  hyperproductive foci. 

In matrix form, so The 2 x 2 

matrix inverse is 

so c=,b= ,c=

and d= (see Kenney and Keeping 1962). These can be rewritten in a 

simpler form in an oviposition, malaria, mosquito, eco-georefereneceable, sub-meter resolution, grid-stratifiable, 

geoclassifable, endmember, LULC, forecast, vulnerability model  by optimally remotely, parsimoniously defining the 

sums of squares = = , 

= = and = =  

A forecast, vulnerability, oviposition, malaria mosquito, LULC, sub-meter resolution,  grid-stratifiable, 

endmember signature model may also be written as = , = and = Here, would be  

the covariance and and would be the model variances. Note that the quantities and can also be 

interpreted as the dot products [e.g., = , = ] In mathematics, the dot product or scalar product 

(sometimes inner product in the context of Euclidean space, or rarely projection product for emphasizing the geometric 

significance), is an algebraic operation that takes two equal-length sequences of numbers (usually coordinate vectors) 

and returns a single number [7]. This operationmay  be definable either algebraically or geometrically in an oviposition, 

ento-epidemiological, forecast, vulnerability, sub-meter resolution, endmember, grid-stratifiable, LULC model for 

aymptotically targeting, eco-georeferenecable, seasonal, hyperproductive, capture point, aquatic, larval, habitat foci 

In terms of the sums of squares, in our oviposition, ento-epidemiological, LULC model An. arabiensis, 

forecast, vulnerability model, the regression coefficient, eco- endmember signature  coefficients  was given by 
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and was given in terms of using (◇) as The overall quality of the fit was then 

parameterized in terms of a quantity known as the correlation coefficient, which we defined in the LULC model  by 

.This rendered  the proportion of which was accounted for by the regression of the ento-

epidemiological, geo-spectrotemporal, geosampled, empiricial, geosampled, regressed, oviposition,capture 

point,aquatic, larval, habitat variables.  

We let be the vertical coordinate of the best-fit line with  geosampled, eco-endmember seasonal, 

hypeproductive,signature,  foci coordinate , so .In so doing, the error between the actual vertical point 

and the fitted, An. arabiensis, aquatic, larval habitat, prolific, capture point was given by  .Therefater, we 

defined as an estimator for the variance in , Subsequently,   was  be given 

by . 

 The standard errors for and are  =  are a special case of the Gegenbauer 

polynomial with [4].The ento-ecoepidemiological, geo-spectrotemporal, eco-georeferenecable,  An. arabiensis, 

aquatic, larval habitat, endmember, polgonized,  LULC, foci covariates   were solutions to the Gegenbauer 

differential equation for integer . They were generalizations of the associated Legendre polynomials to -D 

space, and were proportional to (or, depending on the normalization, equal to) the ultraspherical polynomials . 

The Legendre polynomials, sometimes called Legendre functions of the first kind, Legendre coefficients, or zonal 

harmonics (see Whittaker and Watson 1990) and are solutions to the Legendre differential equation. If  is an integer, 

they are polynomials[4].  

The Legendre polynomials  for the oviposition, eco-endmember, orthogonal, An.arabiensis aquatic, 

larval habitat, sub-meter resolution, grid-stratifiable, LULC, optimizable dataset  were  illustrated 

for  and , 2, ..., 5. They were implemented in the Wolfram Language as LegendreP[n, x].We noted that 

the  geo-spectrotemporally bassociated Legendre signature LULC polynomials  and  were  solutions to 

the associated Legendre differential equation, when  did represent  an unknown  , endmember, capture point , 

frequency, immature density, or LULC, count value  and , ...,  at a forecasted, eco-geoerferenceable,  aquatic , 

larval habitat. 

The ecogeoreferenecable,  geoclassfiied,  LULC, An. arabiensis, aquatic, larval habitat, geo-spectrotemporal, -

meter resolution, capture point, sub Legendre polynomial  was defined by the contour 

integral where the contour enclosed the origin which was traversed in a 

counterclockwise direction. Contour integration is a method of evaluating certain integrals along paths in the complex 

plane [7]. We let and be polynomials of polynomial degree and with coefficients , ..., and , ..., . 

We took the contour in the upper half-plane, replaced by , and wrote  in the frequency ento-
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ecoepidemiological model. Then  .We defined a path which was straight along the 

real axis from to and made a circular half-arc to connect the two ends in the upper half of the complex plane. The 

residue theorem then rendered 

= = = where denoted the 

complex residues. By solving, we were 

optimally able to aymptotically, 

define = =  which was equal to 

= and set the the model output which 

subsequently revealed Now, for . That meant that for 

, or , , so for . We applied  Jordan's 

lemma ( see Appendix 3) with . In so doing, thes malaria model output was so we 

required . Then for and . The model was 

henceforth extended to 

 

Jordan's lemma revealed the value of the integral along the infinite upper semicircle and 

with is 0 in  the An. arabiensis , aquatic, larval habitat ,eco-endmember, orthogonal, geo-spectrotemporal, LULC 

signature functions which satisfied . Thus, the integral along the real axis in the eco-

entomological, gridded, An. arabiensis, asquatic, larval habitat, capture point, forecast, vulnerability model was just the 

sum of complex residues in the contour. The model renderings was established using a contour integral that satisfied 

To derive the forecast datset we wrote x= = = and defined the 

eco-endmeber, sub-mter resolution, oviposition, LULC, capture point, contour 

integral Then =

= Now,  was choosen. In so doing, 
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an  such that , so  in the model output. But, for , so 

= =   

Jordan's lemma yielded  a simple way to calculate the integral along the real axis of functions f(z) = e
i a z

 g(z) 

holomorphic on the upper half-plane and continuous on the closed upper half-plane, at a finite number of  simulated un-

geosampeld, seasonal, hyperproductive,An. arabiensis aquatic, larval habitat,capture points z1, z2, …, zn. We then 

considered the closed contour C, which was the concatenation of the paths C1 and C2. If one identifies C with R
2
, then 

the holomorphic functions coincide with those functions of two real variables with continuous first derivatives which 

solve the Cauchy–Riemann equations, a set of two partial differential equations[7]. 

Every holomorphic function detrmined by the vector arthropod, ento-ecoepidemiological, forecast, 

vulnerability, eco-endmember model was separated into its real and imaginary parts, and each of these was a solution of 

Laplace's equation on R
2
. Inso doing, if we expressed a holomorphic function f(z) as u(x, y) + i v(x, y) both u and v were 

harmonic functions, where v was the harmonic conjugate of u. Cauchy's integral theorem implies that the contour 

integral of every malarai, mosquiot holomorphic function along a loop vanished from the model output[1]. Here γ was a 

rectifiable path in a simply connected open subset U of the complex plane C whose start point was equal to a seasonal, 

eco-georeferenceable, unknown, prolific, capture point,LULC whence f : U → C was a holomorphic function. 

 Contour integration is closely related to the calculus of residues a method of complex analysis[4]. One use for 

contour integrals in a forecast, vulnerability, sub-meter resolution, ,vector arthropod, ento-ecoepidemiological, aquatic, 

larval habitat, prognosticative, ecogeoreferenecable, LULC, oviposition, model is the evaluation of integrals along the 

real line that are not readily found by using only real variable endmember methods. Our contour integration methods 

included1)direct integration of a complex-valued LULC function along a curve in the complex plane (a contour)2) 

application of the Cauchy integral formula3) application of the residue theorem (see Table 9).  

Table 9 The residue theorem applied to the function  

in the An. arabiensis, model whose values of the contour integral were given by  
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An analytic function whose Laurent series was given by  for the ento-

ecoepidemiological, oviposition, forecast, vulnerability, capture point, endmember , LULC model which was an 

integrated  term by term employing a closed contour encircling , 

= = The Cauchy 

integral theorem requires that the first and last terms vanish, so we were left with  where 

was the complex residue[7].. Using the contour in the eco-endmember, aquatic, larval habitat, 

malaria, mosquito prognosticative,LULC, orthogonal, geospectrotemporal model rendered   

 so we then had  If the contour encloses multiple poles, then the 

theorem gives the general result where is the set of poles contained inside the 

contour[4]. The value of a contour integral for any contour in the complex plane depended only on the properties of a 

few very few An. arabiensis, aquatic, larval habitat, eco-endmember, geoclassifiable, LULC, grid-stratifiable, sub-meter 

resolution, capture points inside the contor.  

We employed a combination of methods, for the purpose of finding the seasonal, hyperproductive, eco-

georeferenceable, geo-spectrotemrporal, geosampled, capture point,  endmember, An. arabiensis , oviposition,  LULC  

integrals.We noted in the model renderings  that the first few constructed Legendre polynomials were =1, 

=x, 

= , = , = , = , = 

When ordered from smallest to largest powers and with the denominators factored 

out, the triangle of nonzero coefficients was  1, , 3, , 5,  , ... The leading denominators were 1,  2,  8,  16,  

128,  256, ... The first few powers in terms of ento-ecoepidemiological, oviposition,  geospecified, eco-endmember, 

LULC Legendre, aquatic, larval habitat, geospecified geo-spectrotemporal, capture point,  polynomials were quantitated  

as 

x= , = , = , = , =

 and = . A closed form for 

these was given by  For Legendre polynomials and powers up to 

exponent 12, [see Abramowitz and Stegun (1972)]. 

The eco-georeferenecable, eco-endmember,LULC, signature,  An. arabiensis,capture point, oviposition, 

capture point, aquatic, larval habitat, Legendre polynomials were also  generated employing  Gram-Schmidt 

orthonormalization in the open interval  with the weighting function The Schmidt orthogonalization, (also called 

the Gram-Schmidt process), is a procedure which takes a non-orthogonal set of linearly independent functions and 

constructs an orthogonal basis over an arbitrary interval with respect to an arbitrary weighting function [8]. 

Applying the Gram-Schmidt process to the eco-endmember, oviposition, malaria, mosquito, ,sub-meter 

resolution, LULC  functions 1, , , ... on the interval  with the inner product   rendered  the Legendre, 

geospecified, An. arabiensis, capture point, polynomials.Given an original set of linearly independent,  sub-mter 

resolution, eco-endmember, LULC,  malaria, mosquito, geosampled, geo-spectrotemporal, aquatic, larval habitat 
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,functions , we let  denote the orthogonalized (but not normalized) functions,   which 

subsequently denoted the orthonormalized, vector, arthropod, immature, habitat  functions, and defined =  

and = .We then took  where we  were required to tabulate 

= = By definition, so in the 

forecast, vulnerability, eco-endmember, siganture  model output. The first orthogonalized function was 

in the aquatic, larval habitat, eco-endmeber model and the corresponding normalized 

signature, iteratively interpolative, LULC function was By mathematical induction, it followed 

that where  in the,ento-ecoepidemiological, eco-

endmember  paradigm when  

When the An. arabiensis aquatic, larval habitat, capture points functions were normalized to  instead of 1, 

then the model rendered  , and  The 

oviposition, ento-ecoepidemiological,  endmember, signature, frequency LULC, aquatic, larval habitat, endmember, 

orthogonal polynomials were  easy to generate using Gram-Schmidt orthonormalization. We parsimoniously, robustly, 

geo-spectrotemporally employed the  notation = = where  was 

a weighting function, which  defined the first few polynomials, =1 and = Here, 

  and  were  orthogonal,  capture point, LULC endmember,polynomials, which were validated by 

= = = =1. A weight function was then  

employed to normalize the endmember, orthogonal, LULC functions .The functions and 

were orthogonal over the interval with weighting function  if 

 in the model. 

We employed the recurrence relation to construct all higher 

order, eco-endmember, An. arabiensis habitat, geospecified, grid-stratified, LULC  polynomials.To verify that this 

procedure we produced  orthogonal, eco-endmember, polynomials. 

Weexamined = = =

= = =1 since . We found 
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that all the polynomials were  orthogonal in the eco-georeferenecable,  vector, arthropod, malaria, mosquito, 

aquatic, larval habitat, capture point, orthogonal,LULC model, Another eco-georeferenceable, frequency, capture point, 

eco-endmember, ento-ecoepidemiological, forecast, vulnerability, oviposition model was constructed which optimally 

rendered -1, 

=, = ,P2(x)= =  

Normalizing the seasonal, malaria, eco-endmember, geo-spectrotemporal, LULC model  rendered 

the expected, larval habitat, seasonal, unknown, hyperproductive, An. arabiensis, LULC foci, Legendre polynomials. 

The "shifted" Legendre polynomials were a set of functions analogous to the Legendre polynomials which were defined 

on the interval (0, 1). They followed the orthogonality relationship The first few 

outputs were =1, = , = and =  The Legendre 

polynomials were orthogonal over  with weighting function 1 which in our research model  

satisfied whence   was the Kronecker delta. 

The Legendre polynomials are a special case of the Gegenbauer polynomials with , a special case of 

the Jacobi polynomials  with , and can be written as a hypergeometric function using Murphy's 

formula (see Bailey 1933; Koekoek and Swarttouw 1998). 

The Rodriguez representation provided the forecast, vulnerability, endmember, ento-epidemiological,  LULC, An. 

arabiensis, aquatic, larval habitat,capture point, prognosticative, LULC, orthogonal formula 

as which yielded the 

expansion = =  where  was the floor 

function [also called the greatest integer function or integer value]. We noted that the largest integer was less than or 

equal to . Rodrigues representation is an operator definition of a function [2]. 

Here we converted the Rodriguez formula into a Schläfli integral which was the  integral representation of 

the Bessel functions for any  where 

when . In the oviposition, geo-spectrotemrpoal, eco-endmember, malaria, 

endmember, An. arabiensis, LULC model, orthogonal, grid-stratified, weight   function  was defined by the 

recurrence relations  and . The Bessel functions are more frequently 

defined as solutions to the differential equation [7]. There are two classes of 

solution, called the Bessel function of the first kind and Bessel function of the second kind . A Bessel 

function of the third kind, more commonly called a Hankel function, is a special combination of the first and second 

kinds.) [2]. Several related ento-ecoepidemiological, forecast vulnerability, geo-spectrotemporal, eco-endmember, 

signature,  model ,LULC functions were also defined for asymptotically targeting eco-georeferenecable seasonal, 
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unknown, aquatic, larval habitat, An. arabiensis, capture point,  hyperproductive, foci by slightly modifying the 

defining equations.  

 

We noted that the model was valid for all geosampled, geo-spectrotemporal, uncoalesced, hyperproductive, 

capture point, An. arabiensis, aquatic, larval habitats. The formula was optimally derived 

from .An integral representation of the Legendre polnomials was 

displayed  employing where C was a contour making one contour-clockwise turn 

around z. 

The Iverson bracket for the oviposition, endmember, geoclassified, eco-georeferenecable, LULC, An. 

arabiensis, aquatic, larval habitat,prognosticative, capture point, vulnerability  model  as implemented as a built-in 

function in the Wolfram Language as Boole[S]. Unfortunately, in many older and current works (e.g., Honsberger 

1976,; Steinhaus 1999; Shanks 1993; Ribenboim 1996; Hilbert and Cohn-Vossen 1999; Hardy 1999), the symbol  is 

used instead of  (Graham et al. 1994). In fact, this notation harks back to Gauss in his third proof of quadratic 

reciprocity in 1808. However, because of the elegant symmetry of the floor function and ceiling 

function symbols  and ,in our forecast, vulnerability, An. arabiensis, aquatic, larval habitat, sub-meter resolution, 

eco-endmemeber, LULC model  and because  was such a useful symbol when interpreted as an Iverson bracket  in 

the   oviposition ento-epidemiological model [see Table 11], the use of  may  denote the floor function in these 

paradigms ( see Table 11.The symbol  is used to denote the nearest integer function since it naturally falls between 

the  and symbol[4] 

Then, an element [A] ∈ {0, 1} was defined as follows: We set [A] = ( 1, if A is true; 0, if A is false. For 

example, [1 + 1 = 2] = 1 and [1 + 1 = 3] = 0. The notation [A] for the truth value of A is known as the Iverson bracket 

notation[4]. If A and B are two equivalent logical statements, then [A] = [B]. If A is any logical statement, then [not A] 

= 1 − [A]. If A  and B are two logical statements, then [A ∧ B] = [A] [B]. (d) If A and B are two logical statements, then 

[A ∨ B] = [A] + [B] − [A] [B][2]. If A, B and C are three logical statements, then [A ∨ B ∨ C] = [A] + [B] + [C] − [A] 

[B] − [A] [C] − [B] [C] + [A] [B] [C] [7]. Hence, we assumed if A is true; 0, if A is false = ( 1, if B is true; 0, if B is 

false in the sub-meter resolution, LULC, grid-stratifiable, forecast, vulnerability , eco-endmember,model.  

 

 We considered an observation model of the form z (x) = y (x) + σ (y (x)) ξ (x), x ∈ X, (1) where X was the set 

of the submeter resolution sensors active endmember, LULC, pixel positions, z was the actual raw signature, frequency, 

data output, y was the ideal output, ξ was zero-mean random noise with standard deviation equal to 1, and σ was a 

function y, modulating the standard-deviation of the overall noise component. The function σ (y) was the standard-

deviation function while  σ2 (y)  was the variance function. Since E {ξ (x)} = 0 we had E {z (x)} = y (x) and std {z (x)} 

= σ (E {z (x)}). There were no additional restrictions on the distribution of ξ (x), and different capture points were 

revealed with different distributions. A preference matrix described each habitat signature entry Rij, to find a 

factorization that minimized the root mean squared error on the test set. We defined Iij to be 1, if Rij was known (i.e., 

habitat i had an eco-endmember scatterplot j) and 0 otherwise in the residual, LULC, model derivatives. Further, we let  

N(x|μ,σ2)=fX(x) with X∼N(μ,σ2)X∼N(μ,σ2). Then, we defined a conditional probability of the 

ratingswith hyperparameter σ2p(R|U,V,σ2)=∏i=1N∏j=1M[N(Rij|UiTVj,σ2)]Iij(1)and priors on U and V with geo-

spectrotemporal, ento-ecoepidmeiological, forecastable, regressable,  LULC  

hyperparameters σU2,σV2p(U|σU2)=∏i=1NN(Ui|0,σU2I)and p(V|σV2)=∏i=1MN(Vi|0,σV2I). In the paradigm, y  

maximized the log posterior over U and V to optimally derive a substitute  for the definition of N by invasively taking 

the log[i.e., lnp(U,V,σ2,σ2V,σ2U)]. In so doing,  

12σ2∑i=1N∑j=1MIij(Rij−UiTVj)2−12σU2∑i=1NUiTUi−12σV2∑i=1NViTVi−12(κlnσ2+NDlnσ2U+MDlnσ2V)+C(3)

−12(κln⁡σ2+NDln⁡σU2+MDln⁡σV2)+C(3) was rendered where κ was the number of known, habitat, ento-

endmember, signature entries and C was a constant independent of the  geosampled, capture point, aquatic, larval, 

http://www.wolfram.com/language/
http://reference.wolfram.com/language/ref/Boole.html
http://mathworld.wolfram.com/CeilingFunction.html
http://mathworld.wolfram.com/CeilingFunction.html
http://mathworld.wolfram.com/IversonBracket.html
http://mathworld.wolfram.com/NearestIntegerFunction.html
http://en.wikipedia.org/wiki/Root_mean_squared_error
http://en.wikipedia.org/wiki/Hyperparameter
http://en.wikipedia.org/wiki/Prior_probability
http://en.wikipedia.org/wiki/Posterior_probability


International Research Journal of Computer Science and Application                       

Vol. 2, No. 1, March 2018, pp. 1-181                                                                         

  Available Online at http://acascipub.com/Journals.php 
 

 

 

113 

Copyright © acascipub.com, all rights reserved 

habitat parameters. We adjusted the three variance hyperparameters (which were observation noise variance and prior 

variances) as constants which reduced the optimization to the first three terms (i.e., a sum-of-squared minimization). 

Then defining λM=σ2/σM2 for M=U,V and multiplying by −σ2<0 resulted in the following objective 

functionE=12(∑i=1N∑j=1MIij(Rij−UiTVj)2+λU∑i=1N‖Ui‖F2+λV∑i=1M‖Vi‖F2where ∥A∥2F=∑mi=1∑nj=1|aij|2‖ 

whence F2=∑i=1m∑j=1n|aij|2 was the Frobenius norm. Since all the uncoalesced, iterable, interpolative, signature, 

habitat values were known [i.e.  Iij=1∀(i,j) ] σU2,σV2→∞ was reduced to  a singular value decomposition. 

Table 11 The floor function was generalized to complex  geosampled, An. arabiensis, aquatic, larval 

habitat,signature capture point  larval density seasonal values of   

 

We quantitated the eco-endmember, aquatic, larval habitat, sub-mter resolution, capture point, fractional, 

part/value and integer part/value for the  geosampled, sub-meter resolution, LULC, grid-stratifiable, orthogonal, 

ecogeoreferenceable, forecast, vulnerability, model estimators employing Table 11.  

Table 11 A summary of names and notation implemented in the Wolfram Language as Floor[z], for the 

oviposition, An. arabiensis, aquatic, larval, habitat , endemic foci, geo-spectrotemporal endmember model 

notation name S&O Graham et al. Wolfram Language  

 

ceiling function  -- ceiling, least integer Ceiling[x] 

 

congruence  -- -- Mod[m, n] 

 

floor function  

 

floor, greatest integer, integer part Floor[x] 

 

fractional value 
 

fractional part or  SawtoothWave[x] 

 

fractional part  

 

no name FractionalPart[x] 

 

integer part  

 

no name IntegerPart[x] 

http://en.wikipedia.org/wiki/Matrix_norm#Frobenius_norm%7C
http://www.wolfram.com/language/
http://reference.wolfram.com/language/ref/Floor.html
http://www.wolfram.com/language/
http://mathworld.wolfram.com/CeilingFunction.html
http://reference.wolfram.com/language/ref/Ceiling.html
http://mathworld.wolfram.com/Congruence.html
http://reference.wolfram.com/language/ref/Mod.html
http://mathworld.wolfram.com/FloorFunction.html
http://reference.wolfram.com/language/ref/Floor.html
http://reference.wolfram.com/language/ref/SawtoothWave.html
http://mathworld.wolfram.com/FractionalPart.html
http://reference.wolfram.com/language/ref/FractionalPart.html
http://mathworld.wolfram.com/IntegerPart.html
http://reference.wolfram.com/language/ref/IntegerPart.html


International Research Journal of Computer Science and Application                       

Vol. 2, No. 1, March 2018, pp. 1-181                                                                         

  Available Online at http://acascipub.com/Journals.php 
 

 

 

114 

Copyright © acascipub.com, all rights reserved 

 

nearest integer function  -- -- Round[x] 

 

quotient  -- -- Quotient[m, n] 

The floor function satisfied the identity for all the geosampled, malaria, mosquito, 

geosampled, oviposition, geo-spectrotemporal, LULC, discrete, C integers .A number of geometric-like sequences 

with a floor function in the numerator were  solved analytically. For example,, sums of the form was 

quantitated  analytically for rational . For  a unit fraction, was formulated. For 

irrational , the continued fraction converged to  , 

and , This lead to the result relating sums of the floor function 

of multiples of  to the continued fraction of  by .Additionally, t  

sum formulas were generated for determining the geosampled hypeproductive eco-endmember, LULC, foci, signature  

covariates which included = = . 

 In terms of hypergeometric functions, for the oviposition, sub-meter resolution, LULC, An. arabiensis, 

aquatic, larval habitat, capture point, prognosticative, model , they were  

written = , ,

=  A generating function for  was subsequently provided 

by  for  aymptotically, optiamlly  targeting  seasonal, eco-georeferenceable, 

unknown, hyperproductive, An. arabiensis, LULC,  capture points.We took  

 , We generated and 

added This expansion  was useful for quantitating the 

geosampled, geo-spectrotemporal, eosample,d An. arabiensis, endmember, LULC  covariates since the Heyney-

Greenstein phase function computed the distribution on a sphere. Another generating function was then given 

by where  is a zeroth order Bessel function of the first kind . 

The Legendre polynomials satisfied the recurrence 

relation .In addition, 

corrected any residual probabilistic, 

incospicious uncertaities. A complex generating function  was generated as 

 and the Schläfli integral was  
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Integrals in the LULC, An.arabiensis, forecast, vulnerability model was conducted  over the 

interval which  included the general formula  for  from which the 

specialcase = =  For the integral over a product 

of  the eco-endmember An. arabiensis, capture point, Legendre functions , 

 for  , which gave 

where  

The latter was a special case 

of where  

and  was a gamma function  over the integrals over  with weighting functions  and  which here was 

given by the expression = and 

=  

The Laplace transform  in the eco-epidemiological, An. arabeisnis aquatic, larval habitat, sub-meter resolution, 

eco-endmember, LULC geo-spectrotemporal, signature model was given by: 
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where  was a modified Bessel function of the first kind. A sum identity is given 

by  where  is the th root of  [4]. A similar identity was also 

constructed  employing  which  was  responsible for the fact that the sum of weights 

in Legendre-Gauss quadrature was always equal to 2 throughout the eco-endmember, LULC forecast, vulnerability, 

ento-ecoepidemiological, eco-georeferenecable, signature model construction process. 

In this work, Gegenbauer polynomials were given in terms of the Jacobi 

polynomials  with  by as in Szegö (1975), 

thus making them equivalent to the Gegenbauer polynomials implemented in the Wolfram 

Language as GegenbauerC[n, lambda, x]. These polynomials were also given by the generating 

function The first few Gegenbauer polynomials were =1, 

= , =  and = In terms of 

the hypergeometric functions, [i.e., ].They were 

normalized by for .Derivative identities 

optimally derived from the malaria model included = ,  

= =

, = , =

, = =  which helped  

aymptotically, geo-spectrotemporally, remotely. target seasonal, hyperproductive, An. arabiensis, aquatic, larval 

habitat, eco-endmember, LULC, capture points. 

A recurrence relation is for  also existed in 

the LULC, eco-endmember, An. arabiensis,, aquatic, larval habitat, signature model for optimally targeting seasonal, 

hypeprpoductive, eco-georferenecable,  capture point, foci whence 

= = and

= = This model 

gave representations in terms of elliptic functions for  and . 

A expression was then generated from the eco-georferenced, sub-meter 

resolition, grid-stratified, frequencies for . The Chebyshev differential equation had a regular singular, signature,  
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An. arabiensis, aquatic, larval habitat, ,LULC capture  points at , 1, and . and a power series solution about x0=0x 

for the Chebyshev differential equation(1−x2)y′′−xy′+n2y=0, as a function of of the integer n . We showed that the 

solutions form a terminating expansion for each value of n This equation  was solved by series solution employing the 

geosampled, signature, frequency  model signature, expansions , , and 

.Now,  we plugged  these  equations into the original equation (◇) to obtain 

the following ,which then we decomposed into 

whence

. Further  we solved for  

.Then 

 so  while 

 and by induction,  for , 3, .... ( see Table 11). In Morris and 

Horner [1977], the Chebyshev series solution of a linear fourth-order homogeneous differential equation was discussed 

in relation to eigenvalue problems associated with simple boundary conditions. Its approximate solution  was 

represented in the reproducing kernel space. It was proved that  models can  converges uniformly to the exact solution . 

Moreover, the derivatives of are also convergent to model derivatives. That investigation provided a systematic method 

for obtaining the recurrence relation for the coefficients in a Chebyshev series solution. 

 Here ideas were applied to the solution of both homogeneous and inhomogeneous sub-meter resolution, grid-

stratifiable, eco-endmember, LULC, forecast, vulnerability model  equations of orders one to four. In so doing we were 

able to obtain Chebyshev series expansions for certain rational functions. We studied the nonlinear fourth-order 

differential equation with integral boundary conditions in the reproducing kernel space: 𝑢(4) (𝑥) − 𝜆𝑓 (𝑥, 𝑢 (𝑥)) = 0, 0 < 

𝑥 < 1, 𝑢 (0) = 𝑢 (1) = ∫ 1 0 ℎ1 (𝑠) 𝑢 (𝑠) 𝑑𝑠, 𝑢 (0) = 𝑢 (1) = ∫ 1 0 ℎ2 (𝑠) 𝑢 (𝑠) 𝑑𝑠, The arguments were based upon a 

specially constructed cone and the fixed point theory. First, the conditions for determining solution in (1) were imposed  

on the reproducing kernel space and therefore the reproducing kernel satisfying the conditions for determining a 

solution ( vulnerability forecasts of seasonal, unknown, hyperproductive, aquatic, larval habitat, malaria, mosquito, 

LULC foci..We used the kernel to solve problems. Second, the iterative sequence 𝑢𝑛(𝑥) was emoployed to  

approximate solutions convergence in 𝐶4 to the solution 𝑢(𝑥). 

 

 

 

 

 

 

 

 

 

 

http://mathworld.wolfram.com/SingularPoint.html


International Research Journal of Computer Science and Application                       

Vol. 2, No. 1, March 2018, pp. 1-181                                                                         

  Available Online at http://acascipub.com/Journals.php 
 

 

 

118 

Copyright © acascipub.com, all rights reserved 

Table 11 Solutions to the Chebyshev differential An. arabienis aquatic, larval habitat prognosticative, eco-

endmember, LULC  equation  denoted by  .  

`  

The Chebyshev, eco-epidemiological, forecast, vulnerability, An. arabiensis aquatic, larval habitat, geo-

spectrotemporal, endmember, LULC polynomials of the first kind were denoted , and were implemented in 

the Wolfram Language as ChebyshevT[n, x]. They were  normalized such that . The first few polynomials 

for  and ,….The Chebyshev polynomial of the first kind  was   defined by the contour 

integral where the contour encloses the origin and was traversed in a 

counterclockwise direction (see Arfken 1985). 

The first few An. arabiensis-related Chebyshev polynomials of the first kind were =1, 

=x, = , = , = , = , =

 ( See Figure 1) 

Figure 1 Ordered from smallest to largest powers, the triangle of nonzero coefficients was 1; 1; , 2; , 4; 

1, , 8; 5, , 16, ...  
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A beautiful plot was obtained by plotting  radially, increasing the radius for each predicted, An. 

arabiensis, aquatic, larval habitat value of , and filling in the areas between the curves. The Chebyshev polynomials of 

the first kind generated from the empirical geosampled, geo-spectrotemporal, sub-meter resolution, eco-endmember 

LULC signature, frequency dataset  were defined through the identity The Chebyshev 

polynomials of the first kind were obtained from the  training, geosampled, An. arabiensis capture point dataset by 

generating 

functions = = and = = for  and .

. 

A direct representation of the eco-endmember, An. arabiensis aquatic larval habitat, oviposition, capture point, 

ento-ecoepidemiological, forecast, vulnerability,LULC model was given 

by .The polynomials were defined in terms of the 

sums = = = when  was a binomial 

coefficient and   was the floor function, or the product . 

         In the sub-mter resolution, An. arabiensis , aquattic, larval habitat frequency model  also satisfied the 

curious determinant equation .The Chebyshev polynomials of the first kind are a 

special case of the Jacobi 

polynomials  with , = = where  is 

a hypergeometric function [6]. Zeros occur when for , 2, ..., . Extrema occurred in the An. 

arabiensis, forecast, vulnerability, LULC, eco-endmember, signature, frequency  model 

for where  and att maximum, , and at minimum, . 

The eco-endmember, LULC, An. arabiensis, aquatic larval habitat, capture point, eco-georeferenceable, 

Chebyshev polynomials were orthogonal polynomials with respect to the  weighting 

function where  was the Kronecker delta. 
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Chebyshev polynomials of the first kind satisfied the additional discrete 

identity where  for , ...,  are the  zeros of .They also 

optimally, remotely, geo-spectrotemporally satisfied the recurrence 

relations = , = for  in the An. arabiensis, 

capture point, signature, eco-endmember, LULC model output  as well 

as = , = . The derivatives  had 

a complex integral representation which was represented in the forecast, vulnerability, model 

as and a Rodrigues representation which was solved as 

 

Using a fast Fibonacci transform the An. arabiensis capture point, oviposition, frequency,signature, LULC 

model rendered Using Gram-Schmidt orthonormalization in the range 

( ,1) with weighting function  then rendered 

=1, = = =x, = =

= Normalizing  in the model then rendered the Chebyshev polynomials of the first 

kind.( see Figure 2). 

Figure 2.The An. arabiensis predicted capture point resultants    

 

The EM algorithm proceeded from the geo-spectrotemporal geosampled oviposition, eco-georeferenecable, 

aquatic, larval habitat, explanatory foci, LULC observations  and solve sets of equations numerically. The EM 

algorithm (Dempster, Laird, and Rubin 1977) is a technique that finds maximum likelihood estimates in parametric 

models for incomplete data. The books by Little and Rubin (2002), Schafer (1997), and McLachlan and Krishnan 

(1997) provide a detailed description and applications of the EM algorithm.The EM algorithm is an iterative procedure 

that finds the maximum likelihood estimation of the parameter vector[4].Given the set of An. arabiensis, capture point, 

aquatic, larval habitat, parameter, eco-endmeber estimates, including the mean vector and covariance matrix for the 
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multivariate normal distribution, the E-step calculated the conditional expectation of the complete-data log likelihood 

given the observed capture point data and the sub-meter resolution, LULC, orthogonal, oviposition, parameter 

estimates.Thereafter, a complete-data log likelihood was conducted and the M-step found  the An. arabiensis, 

hyperproductive, capture point, unknown, parameter estimates which maximized the complete-data log likelihood from 

the E-step.The two steps iterated until the iterations converged. 

In the EM process, the An. arabiensis aquatic, larval habitat, capture point, observed, LULC eco-endmember 

data log likelihood did not nondecrease at each iteration. For the multivariate,ento-ecoepidemiological,oviposition 

geosampled, LULC data, there were a  groups with distinct missing topological patterns. The observed eco-

endmember, malaria, mosquito,sub-meter resolution, data log likelihood being maximized was then expressed  

as which was the observed-data log likelihood from the th group whence 

where  was the number of prognosticated, 

hyperproductive, eco-endmember An. arabiensis, capture point,observations in the th group. The summation was over 

observations in the th group, whence  was a vector of observed geosampled, geospectrotemporal, endemic, sub-

pixxel LULC values corresponding to observed variables whence  was the corresponding mean vector, and  was 

the associated covariance matrix. 

A sample covariance matrix was computed at each step of the EM algorithm. If the covariance matrix is 

singular, the linearly dependent variables for the observed data are excluded from the likelihood function [8]. Hence for 

each predicted eco-endmember, capture point, An. arabiensis, LULC observation with linear dependency amongst its 

observed capture point, aquatic, larval habitat variables, the dependent variables were excluded from the likelihood 

function. Note that this can result was an unexpected change in the likelihood between iterations prior to the final 

convergence. 

PROC MI used the means and standard deviations from available eco-epidemiological, eco-endmember, 

signature LULC, immature habitat data as the initial estimates for the EM algorithm. The correlations were set to zero. 

These initial estimates provided a good starting value with positive definite covariance matrix. We specified the 

convergence criterion with the CONVERGE= option in the EM statement. The iterations were considered to have 

converged when the maximum change in the geosampled, oviposition, orthogonal,An. arabiensis LULC, parameter 

estimates between iteration steps was less than the value specified. We specified the maximum number of iterations 

used in the EM algorithm with the MAXITER= option. 

The MI procedure displaysed the tables of the geosampled, An. arabiensis, capture point, LULC signature, 

parameter estimates to begin the EM process along with  the maximum likelihood  parameter estimates derived from 

EM. You can display the EM iteration history with the ITPRINT option[www.sas.com]. PROC MI listed the iteration 

number, the likelihood 2 log L, and the capture poit, unknown seasonal habitat parameter values  at each iteration. 

We saved the ovipoition, LULC , eco- endmembers, derived from the EM algorithm in a SAS data set by specifying the 

OUTEM= option. 

 

 Here we employed the EM algorithm to compute the maximum likelihood estimates for the sub-meter 

resolution, umixed, frequency signature,a quatic larval habitat, multivariate, normally, distributed iteratively 

interpolatale,  LULC data with missing values. To use EM, we employed the given ,capture point, geosampled  eco-

georeferenced, observed data y, a parametric density p(y | θ), a description of the geosampled, larval habiotat, frequency  

data x and the parametric density p(x | θ). At this point, we assumed what the complete habitat dataset x could be 

modeled as a continuous random explanatory variable X with density p(x | θ), where θ ∈ Θ. The treatment of discrete 

random variables is very similar: one only need to replace the probability density function with probability mass 

function and integral with summation[2] We assumed that the support X of X, where X was the closure of the 

geosampled empricial regressable dataset  x  p(x | θ) > 0 , did not depend on θ.  For example, we did not address the 

case whence θ was the end capture point of a uniform distribution.: Notation Summary y ∈ R d1 measurement habitat  

observation had Y ∈ R d1 random measurement.  We assumed we  had a realization y of Y x ∈ R d2 complete eco-
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endmeber LULC dataset for asymptotically targeting seasonal unknown, eco-geoerferenecable,  prolific foci but instead 

we had y = T(x) X ∈ R d2, a  random complete dataset;  

 

The intuition behind EM is an old one: alternate between estimating the unknowns Θ and the hidden variables J. 

This idea has been around for a long time. However, instead of finding the best J ∈ J given an estimate Θ at each 

iteration for our sub-mter resolution, An. arabiensnis, grid-startfiaible, prognosticative, LULC signature eco-endmeber 

model , the EM computed a distribution over the space J . One of the earliest papers on EM is (Hartley, 1958), but the 

seminal reference that formalized EM and provided a proof of convergence is the “DLR” paper by Dempster, Laird, and 

Rubin (Dempster et al., 1977). A recent book devoted entirely to EM and applications is (McLachlan and Krishnan, 

1997), whereas (Tanner, 1996) is another popular and very useful reference. One of the most insightful explanations of 

EM, that provides a deeper understanding of its operation than the intuition of alternating between variables, is in terms 

of lowerbound maximization (Neal and Hinton, 1998; Minka, 1998). In this derivation, the E-step was interpreted as 

constructing a local lower-bound to the posterior distribution in the An. arabiensis eco-endmember, capture point, 

predictive, vulnerability,LULC model for asymptotically optimally remotely geo-spectrotemporally targeting seasonal, 

eco-georeferenecable, hyperproductive aquatic, larval habitat seasonal foci  ,whereas the M-step optimized the bound, 

thereby improving the estimate for the unknowns.  

 

The following statements invoked the MI procedure and requested the EM algorithm to compute the 

hyperproductive capture points using    from the input dataset  

 

proc mi data=An. arabiensis =151 simple nimpute=0; 

   em itprint outem=outem; 

   var Oviposition geosample larval habitat ; 

run; 

Note that when we specify the NIMPUTE=0 option, the missing values wewre not imputed.The "Model 

Information" table ( see Table 12)  described the method and options employed in the procedure when a geosampled, 

An. arabiensis, aquatic, larval habitat was specified in the NIMPUTE= option. 

 

Table 12. The MI procedure for the An. arabiensis aquatic, larval habitat, spectral model 

 

Model Information 

Data Set An. arabiensis. 

Method MCMC 

Multiple Imputation Chain Single Chain 

Initial Estimates for MCMC EM Posterior Mode 

Start Starting Value 

Prior Jeffreys 

Number of Imputations 0 
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Model Information 

Number of Burn-in Iterations 200 

Number of Iterations 100 

Seed for random number generator 151 

 

The "Missing Data Patterns" table in the oviposition, sub-meter resolution, grid-stratfiable, listed, distinct, 

missing LULC data patterns with corresponding frequencies and percentages. Here, a value of "X" meant that the 

geosampled, An. arabiensis, aquatic, larval habitat, eco-georeferenecd, LULC variable was observed in the 

corresponding group and a value of "." meant that the variable was missing. The model output displayed the group-

specific, oviposition, LULC, geo-spectrotemporal, endmember variable means.  

 

With the SIMPLE option, the procedure displayed simple descriptive univariate statistics for the eco-

georeferenceable, hyperproductive, oviposition, LULC, capture points employing univariate statistics which included 

correlations from pairwise available An. arabiensis aquatic, larval habitats as in Table 13. This option displayed simple 

descriptive statistics (mean, standard deviation, minimum and maximum) for each explanatory geosampled, sub-meter 

resolution, grid-stratfiied, geoclassifiable, ento-endmember LULC, signature, frequency variable in the MODEL 

statement. The SIMPLE option generates a breakdown of the simple descriptive statistics for the entire empirical 

ovispoition, capture point, regressed dataset and also for individual response levels. 

 

Table 13: Univeraite statistics for the An. arabeisnis LULC  signature model 

 

Variable N Mean Std Dev Minimum Maximum 

Missing Values 

Count Percent 

Levels of water  8 47.11 5.41 37.3 60.0 3 9.68 

Larval count 8 90.3 7.11 86 140 113 96 

Distance from capture point 8 1.71 1.01 1.48 1.86 .911 1.03 

 

The expectation-maximization (EM) algorithm is a technique for maximum likelihood estimation in parametric 

models for incomplete data[2]. The EM statement used the EM algorithm to compute the MLE for ,  in the sub-

meter resolution, geo-spectrotemporal, grid-startified, LULC, eco-endmember, signature model for optimally 

asymptotically geolocation unknown seasonal, eco-georeferenecable, hypeporductive foci. The means and covariance 

matrix, of a multivariate normal distribution from the input data set was employed to determine  missing values in the 

empricially regressable, frequency unmixed signature, iteratively interpolative estimators. The means and endmeber 

covariances from complete cases or the means and standard deviations from available cases can be used as the initial 

estimates for the EM algorithm[7]. We specified the correlations for the unknow, capture point, prolific estimates from  

the available  geosampled sub-pixel LULC dataset. We employed  the EM statement with the NIMPUTE=0 option in 

the PROC MI statement to compute the EM estimates without multiple imputation. PROC CORR also estimates a 

correlation by using  the eco-endmember uncoalesced, frequency, sub-meter resolution,  datasets with nonmissing, 

LULC values. In so doing the available data, revealed optimal resulting correlation matrix but it was not  positive 

definite. We employed the EM statement,  
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  proc mi data=FitMiss An. araiensis data nimpute=0; 

      em itprint outem=outem; 

      var RunTime RunPulse; 

   run;  

 

where the MI procedure displayed the initial oviposition, eco-endmeber, An. arabiensis LULC, spectral-temporal, 

hyperproductive, aquatic larval habitat, capture point, eco-georeferenced, geoclassified, parameter estimates for the EM 

algorithm in the "Initial Parameter Estimates  ( Table 14). 

 

Table 14 The ITPRINT option in the EM statement, the "EM (MLE) Iteration History" to display the iteration 

history for the EM algorithm for the An. arabiensis forecast  model. 

 

EM (MLE) Iteration History 

_Iteration_ -2 Log L Larval count Distance to capture point Levels of vegetaion 

0 289.544782 47.116179 10.688214 171.863636 

1 263.549489 47.116179 10.688214 171.863636 

2 255.851312 47.139089 10.603506 171.538203 

3 254.616428 47.122353 10.571685 171.426790 

4 254.494971 47.111080 10.560585 171.398296 

5 254.483973 47.106523 10.556768 171.389208 

6 254.482920 47.104899 10.555485 171.385257 

 

In this paper, we consider an extension of the EM-algorithm presented in Laird & Ware (1982) for parameter 

estimation in a bivariate response random-effects model. We presented the algorithm for two possible types of 

‘missing’ data structures. In the first case both aquatic, larval habitat, eco-endmember, characteristics were observed at 

each  habitat, though the number and timing of the geosampled, geo-spectrotemporal, An. arabiensis, endemic 

foci,capture point,  LULC observations differed from individual habitat to individual habitat  (i.e., the larval data were 

complete in number of observations per experimental unit). We employed the EM-algorithm for obtaining maximum 

likelihood or restricted maximum likelihood (REML) estimates for the oviposition, endmember, geosampled, An. 

arabiensis, geo-spectrotemporal, grid-stratified, LULC parameters. It should be noted that the estimate was easily 

obtained via a closed form solution by Generalized Least Squares (GLS).  

We let r index the  iterations for r = O, 1,2, . . . . m, where r = O denoted the geosampled An. arabiensis, grid-

stratified oviposition, sub-meter resolution, endmember,LULC signature  values. The sufficient statistics for the model 

frequency estimators were ~(Ei ) and ~(~i) respectively. Since Ti and ei = vec(E;) were unobservable, the algorithm 

computed the expectations of the sufficient statistics and then solved for maximum likelihood. The algorithm employed 

the joint density of yi, vi, ei to obtain the conditional expectations of the sufficient statistics. In the E-step we let @ be 

the vector of unknown seasonal, un-geosampled, hyperproductive, An. arabiensis, eco-endmember, geo-

spectrotemrpoal, geosampled, LULC  parameters in E and D and  O(r) which we  denoted  by their  larval habitat values 

at the end of the ~th iteration. The estimate for B given values was i=l where P~’) = Vi(’)’1 and Vi = Var(yi) = 
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[Z$DZ~’ + Y @ Ii]. Letting ri(’j = yi – xt~t’) and B@2 = B’, the expectations of the Jh term of the sufficient statistics 

was given by: q(%)(%’ylyi, @),@TJ = {E[-yi[yi,e(7),p(T)]}@’2+v[-/ily;, d’), p(T)] .E[(Eij)’(Ei~)lyi, d7), fI(T)] = 

EIE~jly~,6(7), @T)]’EIEiklyi,/3@),@T)] (~), p(0)], j,k = 1,2. + tr[Cov(Eij, EMlYi, ~. These expectations were easily 

obtained using the conditional mean and covariance matrix of the ento-ecoepidemiologically, tabulated, multivariate 

normal distribution. In the M-step, X(’+l) and D(’+l) were found by equating them to the expected value of their 

sufficient statistics. For the ovispsoition, capture point,ML estimates the iterative equations were: N D(7+1) = [Hq(-

f;)(~i)’lyi, 0 1]/ (~),p(~)] ~, i=l (T+l) _ rjk-[~ni]-l[~[E[(Eij),(Ei~) Iyi,~(T),P(T)I]], j,k=l,2‘i=l. The model output was 

addressed in detail with the estimating equations being derived for both ML and REML estimation.  

The  following statements used the restricted maximum likelihood (REML) for estimation which  produce Table 14  

   proc varcomp method=reml data=a; 

      class a b; 

      model y=a|b / fixed=1; 

   run; 

 

Table 15 REML estimation of the An. arabiensis aquatic, larval habitat model 

 

Iteration Objective Var(b) Var(a*b) Var(Error) 

0 63.4134144942 1269.52701 0 91.5581191305 

1 63.0446869787 1601.84199 32.7632417174 76.9355562461 

2 63.0311530508 1468.82932 27.2258186561 78.7548276319 

3 63.0311265148 1464.33646 26.9564053003 78.8431476502 

4 63.0311265127 1464.36727 26.9588525177 78.8423898761 

 

 

REML Estimates 

Variance Component Estimate 

Var(b) 1464.4 

Var(a*b) 26.95885 

Var(Error) 78.84239 

  

 
 

Asymptotic Covariance Matrix of Estimates 

  Var(b) Var(a*b) Var(Error) 

Var(b) 4401703.8 1.29359 -273.39651 

Var(a*b) 1.29359 3559.1 -502.85157 

Var(Error) -273.39651 -502.85157 1249.7 

 

 

The "REML Iterations" in Table 15 showed that the REML optimization of the An.arabeisnis aquatic, larval 

habitat, oviposition, eco-endmember, LULC data required four iterations to converge.The REML estimated all 

corresponding ML estimates and adjusted for potential downward bias. Type I estimates were rectified. The asymptotic 

covariance matrix of the ento-ecoepidemiological, eco-georeferenceable, grid-stratified, eco-endmember LULC, 

frequency estimates" in Table 15 revealed that the error variance component endmember, iteratively interpolative, 
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signature estimate was negatively correlated with the other variance component estimates, and the estimated variances 

were all larger than their ML counterparts. 

To obtain REML estimates, at the E-step conditioned only on y,  we employed  the aquatic, larval habitat, 

density, endme,ber,LULC, simuatedcounts since ~ was  integrated out of the likelihood using a flat prior. Using the 

posterior distribution of ,B we obtained the conditional expectations of the sufficient statistics: + tTIUjkIi– 

(~ljIilujzIi)@i (61kIi[6kzIi)’]j j] k = lj 2. For obtaining starting values for the geosampled, geo-spectrotemporal, An. 

arabiensis ,capture point, hyperproductive, eco-endmember, LULC, signature  foci we conducted an OLS for each grid-

stratified , LULC unit and requisited a minimum number of repeat measurements. The model used to fit by OLS was 

equivalent to the random design, Yi = ZJ~i +ei. This yielded vi(o) and ei(o) = vec[Ei(0)]. From these we obtained ~(o) 

using (2), and D(o) and E(o) which was obtained employing the following equations N D(o) = [Z(Vi(o) – ~ Nvi(o) ) 

@21/N, and Y(o) = i=l [f(Ei(0))’] / ~ni. 

A malariologist or medical entomologist may pick arbitrary, malaria, mosquito, immature habitat, seasonal 

geosampled, frequency, density, count values for one of the two sets of unknowns, and then use them to estimate the 

second set. In so doing, the new values may find a better estimate of the first set. Hence by alternating between the two 

geosampled, LULC datasets, the resulting values would be both estimateable since they would converge to fixed 

capture points (i.e., seasonal, hyperproductive, aquatic, larval habitat, eco-georrferenceable,LULC, eco-entomological 

foci). It may be proven that in forecast, vulnerability, malaria, endmember, sub-meter resolution, grid-stratifiable, 

LULC modelling context that the derivative of the likelihood is arbitrarily close to zero at the capture point, foci which 

in turn would mean that the point is either a maximum or a saddle point. 

 In general, multiple maxima may occur, with no guarantee that the global maximum is quantifiable in an eco-

endmember, prognosticative, malaria, mosquito, sub-meter resolution, vulnerability, oviposition, LULC, signature 

model. Some likelihoods in these models may have also have singularities in them, (i.e., nonsensical maxima). For 

example, one of the solutions that was found by EM in our mixture, model was attained by setting one of the eco-

endmember grid-stratified, LULC components (Euclidean distance from capture point to village centroid) to have zero 

variance and the mean, eco-endmember, geo-spectrotemporal, LULC parameter for the same component to be equal to 

one of the known, eco-georefereneced, hyperproductive, seasonal, capture point. 

Whenst searching for the MLE of a likelihood  in  an oviposition, malaria, mosquito,  endmember, sub-meter 

resolution, ento-ecoepidemiological,signature, forecast, vulnerability  model of the form∫f(x,z|β)dz, the EM- algorithm  

should optimally proceed by iteratively maximizing (M) expected (E) complete log-likelihoods, which may result in 

maximizing β at iteration  for rendering a quantitative explanatory, time series, quantitable  LULC function which may 

be devisable from Q(β|βi)=∫log⁡f(x,z|β)f(z|x,βt)dz.The algorithm  may identify the latent explanatory, endmember 

LULC variable z and its conditional distribution in the ento-ecoepidemiological, forecast, vulnerability, endmember, 

signature,  malaria model. In so doing an eco-georeferenceable, seasonal, hyperproductive, malaria, mosquito, 

oviposition, ento-ecoepidemiological, capture point, aquatic, larval habitat foci may be distinguishable on a sub-meter 

resolution, grid-stratified, orthogonal image. 

A polynomial furnishing the best approximation of an endmember, oviposition, function  can occur in 

some metric, relative to all optimizable   An. arabiensis ,aquatic, larval, habitat, polynomials constructed from a given 

(finite) system of eco-endmember, grid-stratfiable, sub-meter resolution LULC, siganture functions . If x is a normed 

linear function space in an eco-georeferenecable, capture point,  oviposition, sub-meter resolution, grid-stratifiable, 

malaria, mosquito, capture point, endmember, signature model  (such as or , ), and if 

 is a system of linearly independent, frequency-oriented, aquatic, larval, habitat,time series, 

LULC, endmember, sub-meter resolution, grid-stratifiable, signature  functions in x, then for any the 

generalizable LULC polynomial of best approximation may be defined by the relation  

 which may or may not exist in the output. The polynomial of best approximation would be 

unique for all , malaria, mosquito, capture points if  is a space with a strictly convex norm (i.e. if 
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and , then ). This was the case for ,  in our model 

derivative dataset. In , which had a norm that was not strictly convex in our model, the polynomial of best 

approximation for any  seasonal, hyperproductive, aquatic, larval habitat foci was unique if  was a 

Chebyshev system on , (i.e. if each capture point polynomial and at most  zeros 

occurred on .  

For any finite k≤nk≤n the functions ϕ1(x),…,ϕk(x)ϕ1(x),…,ϕk(x) forms a Chebyshev system on (a,b)[4]. 

Examples of Markov function systems  which may be applicable for regressively quantiating an uncoalesced LULC 

dataset of  sub-mteer resolution, capture point, oviposition, endmember, geo-spectrotemporal,  geosampled, malaria 

mosquito, ento-ecoepidemiological, geo-spectrotemporal, prognosticative, risk  modeling frequencies  may  include 

a) 1,x,x2,…,1,x,x2,…, on any interval [a,b]; b) 1,cosx,cos2x,…, ,…, on [0,π]; c) sinx,sin2x,…, on [0,π] for optimally 

targeting seasonal, eco-georferenceable, hyperproductive, capture point foci. 

In particular, a malariologist or medical entomologist could quantitate uniqueness in the case of the (usual) 

algebraic polynomials in , and also for the trigonometric, endmember grid-stratifable polynomials in the space 

of continuous -periodic functions on the real line, with the uniform metric for adjusting erroneous variability 

in an oviposition, geo-spectotemporal, ento-ecoepidemiological, sub-meter resolution, capture point, forecast, 

vulnerability, ecogeoreferenceable, endmember,LULC model. If the polynomial of best approximation exists in the 

signature, oviposition, sub-meter resolution, model and is unique for any , ( e.g., geolocation of a capture point, 

seasonal, eco-georeferenceable, hyperproductive, aquatic, larval habitat foci)  the oviposition model may have a 

continuous function of .  

Necessary and sufficient conditions for a polynomial to be a best approximation in the spaces and 

 in a sub-meter resolution, oviposition, malaria mosquito, grid-stratifiable, forecast, vulnerability,  

endmember,LULC model may be also known. For example, if a malariologist or medical entomologist  employs 

Chebyshev's theorem in an aquatic, larval habitat, endmember, risk model   would have  a Chebyshev system when  

the endmember LULC geo-spectrotemporal, ento-ecoepidemiological polynomial (*) is a polynomial of best 

approximation for a function in the metric of if and only if there exists a system of  field-

verifiable, eco-georeferenecable, capture points , , at which the difference 

assumes,  discrete integer, frequency, denisty, habitat, count  values and, 

moreover,  The polynomial (*) is a polynomial of best approximation for a 

function , , in the metric of that space, if and only if for , 

[4]. If  occurs in the ento-ecoepidemiological, endmember LULC, 

oviposition model, the conditions may be  suffice for optimally 

quantitating  so as to be a polynomial of best approximation for  in a sub-meter resolution, malaria, 

mosquito, forecast, vulnerability, grid-stratifiable model. If  the measure of the set of all geo-spectrotemporal, 

geosampled, eco-georeferenceable, aquatic, larval habitat, capture points at which is zero,this 

would allow enabling a malariologist, medical entomologist or other experimenter to exploit effectively the endmeber 

LULC polynomial and the error of best integral approximation of a function . This was established by A.A. Markov in 

1898.  

Hence, if a malariologist or medical entomologist lets , , be a system of linearly 

independent, explanative, capture point, eco-georferenecable, grid-stratifiable, malaria mosquito,  endmember, geo-

spectrotemporal,geoclassifiable, LULC functions continuous in an signature, oviposition, sub-meter resolution, 

https://www.encyclopediaofmath.org/index.php/Chebyshev_system
https://www.encyclopediaofmath.org/index.php/Chebyshev_system
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prognosticative,vulnerability model  on the interval , and let the continuous function change sign at an 

unknown, seasonal, hyperproductive, capture point then in  would be quantifiable such that 

occurs in the model output. If the malaria, mosquito polynomial 

has the property that the difference changes sign at the seasonal, hyperproductive, 

capture  points , and only at those points, then would be  the polynomial of best integral approximation to 

and . Further the system 

on , may  be taken to be ; in the model for quantitating the system 

, ,  which may be  be taken to be ; when targeting seasonal, 

hyperproductive, malaria, mosquito, aquatic, larval, habitat, foci. .Hence , 

.  

More generally, note that (Xi − X)(Yi − Y) is positive in an ento-ecoep 

idemiological, prognosticative, malaria, capture point,  aquatic,larval  habitat,capture point,oviposition,   regression-

related, LULC, endmember model  if and only if Xi and Yi lie on the same side of their respective means. Thus, the 

correlation coefficient for an eco-georeferenceable, sub-meter resolution, seasonal, hyperproductive grid-stratfiable, 

eco-endmember foci would be positive if Xi and Yi tend to be simultaneously greater than, or simultaneously less than, 

their respective means. The correlation coefficient would be negative if Xi and Yi tend to lie on opposite sides of their 

respective means in the model. Moreover, the stronger the anti-correlation tendency in the ento-ecoepidemiological, 

geo-spectrotemporal, oviposition, endmember LULC model output, the larger would be the absolute value of the 

correlation coefficient in the model. 

Geometerically there would be a quantitative  relationship between the correlation coefficient in an 

oviposition, vulnerability, forecast, capture point,  sub-meter resolution, endmember, LULC, signature,orthogonal  

model and the angle φ between the two regression lines, y = gx(x) and x = gy(y) which may be regressively obtainable 

by quantitating y on x and x on y respectively. Here φ may be measured within the first quadrant formed around the 

lines' intersection point if r > 0, or counterclockwise from the fourth to the second quadrant if r < 0.)A malariologist, 

medical entomologist or other experimenter may determine that if the standard deviations are equal in an oviposition, 

prognosticative, endemic, risk model, then r = sec φ − tan φ, where sec and tan are trigonometric functions. For robustly 

centered, geosampled malaria, mosquito, capture point, eco-georeferenceable, geo-spectrotemporal, geoclassified, 

LULC endmember observations (i.e., eco-georeferenecable, seasonal, hyperproductive  aquatic, larval habitat data 

which have been shifted by the sample means of their respective variables so as to have an average of zero for each 

variable), the correlation coefficient can also be viewed as the cosine of the angle θ between the two vectors of samples 

in n-dimensional space (for n samples of each grid-stratifiable oviposition prognosticator). 

Both the uncentered (non-Pearson-compliant) and centered correlation endmember, grid-stratfiable, LULC, 

ento-ecoepidemiological, coefficients can be determined for an empricial regressable optimizable oviposition, dataset of 

eco-georeferened, geosampled, malaria, mosquito, capture point regressors. In so doing,  an eco-entomological, 

forecast, vulnerability, endmember LULC, model framework  may be developed by conceiving a quantity of the total 

larval productivity in an ento-ecepidemiological, intervention or control, study site area, partitioned into its constituent 

parts from individual capture point, aquatic, larval hyperproductive, seasonal geosampled,eco-georeferenecd,  habitats 

to determine impacts on parasitological, geospectrotemporal, endmember  indicators of malaria transmission.  

Regardless, in a regression, forecast, vulnerability, endemic endmember equation if the x or y geosampled, 

eco-georeferenecable,  capture point, malaria, mosquito, seasonal, surveyed, capture point, larval habitat populations are 

quantitatively analyzed violations of one or more of assumptions, within a statistical algorithm (e.g.,binary logistic)  

http://www.basic.northwestern.edu/statguidefiles/sg_glos.html#population


International Research Journal of Computer Science and Application                       

Vol. 2, No. 1, March 2018, pp. 1-181                                                                         

  Available Online at http://acascipub.com/Journals.php 
 

 

 

129 

Copyright © acascipub.com, all rights reserved 

would render incorrect or misleading, LULC forecasts (e.g., false explanators of seasonal, hyperproductive foci). If the 

assumption of independence is violated in  an ento-ecoepidemiological,  prognosticative,  time series, malaria, 

mosquito, capture point, empirical, regressed,edmember, LULC dataset, then quantitating linearity would  not be 

appropriate for determining type I error [e.g.,  incorrect rejection of a true null hypothesis  (a "false positive")]. Hence, 

if the assumption of normality is violated, or outliers are present in an empirical LULC dataset of eco-georeferenced, 

geo-spectrotemporal, sub-meter resolution,grid-stratified,  malaria, mosquito, ento-ecoepidemiological, capture points 

with their geosampled aquatic, larval, habitat count variables,  then the linear regression goodness of fit test may not be 

the most powerful test available for predicting, hyperproductive, oviposition, seasonal,  malaria, mosquito, immature 

habitat endmember foci.  

Apparent lack of independence in fitted y values in an oviposition, sub-meter resolution, malaria, mosquito, 

ento-ecoepidemiological, forecast, vulnerability, endmember, sub-meter resolution, grid-stratifiable, LULC,  signature 

model may be caused by the existence of an implicit x variable in the geosampled data. Thus, an x variable may not be 

explicitly usable in the linear model for forecasting, orthogonal, capture point, seasonal, hyperproductive foci. In this 

case, the best model for optimally regressively quantitating, empirical, geosampled, malaria, mosquito, aquatic, larval 

habitat, parameterizable, frequency, signature, geo-spectrotemporal, eco-georeferenecable, LULC, endmember 

covariates may still be linear, but may not include the original x variable. If there is a linear trend in the plot of the 

uncoalesced, regression residuals against the fitted values, in the malaria, mosquito, prognosticative, endmember, 

frequency model then an implicit x variable may be the cause. A plot of the residuals against the prospective new X 

geosampled regressed, oviposition- sub-meter resolution, LULC variables could reveal whether there is a systematic 

variation exists in the grid-stratified,  endmember, model output. If there is, a malariologist, medical epidemiologist or 

other experimenter may consider adding a new x variable to the linear, ento-ecoepidemiological, forecast, vulnerability, 

eco-endmember model.  

If an implicit x variable is not included in a fitted, malaria, mosquito forecast-oriented, exploratory,LULC risk  

model, the fitted oviposition, estimates for the slope and intercept may be biased, and hence  may not render precise 

data,( i.e, non verifiable, geolocations of eco-georeferenecable,  seasonal, hyperproductive foci) and the fitted y values 

may not be accurate. Another possible cause of apparent misspecification in an oviposition, malaria, mosquito, 

regression, forecast, vulnerability, sub-meter resolution, LULC geo-spectrotemporal model for optimally targeting 

hyperproductive, aquatic, larval, habitat foci may be due to the presence of an implicit block effect in the model ento-

ecoepidemiological estimators. The block effect can be considered as another type of implicit X variable, albeit a 

discrete one in any prognosticative, endmember, sub-meter resolutionoviposition, ento-ecoepidemiological, LULC, risk 

model. If a blocking regressable capture point grid-stratfiable, oviposition, geo-spectrotemporal, malaria, mosquito, 

endmember, larval habitat, geosampled explanatory variable is suspected, an analysis of covariance may be performed, 

essentially dividing the data into different regression lines based on the value of the blocking variable. 

If two explicative, time series, oviposition, An. arabiensis, mosquito, seasonal, regressed, normalized 

distributions are being compared for similarity, the LULC, endmember, capture points in the Q–Q plot will 

approximately lie on the line y = x. If the distributions are linearly related, the points in the Q–Q plot will 

approximately lie on a line, but not necessarily on the line y = x. Q–Q plots may also be employable as a graphical 

means for optimally estimating, eco-georeferenecable, eco-geographical, ento-ecoepidemiological, geosampled, sub-

meter resolution, grid-stratifiable, geo-spectrotemporal, An.arabiensis immature, habitat, capture point, frequency, 

signature, parameter estimators employing  a location-scale family of distributions. 

Further, a Q–Q plot may be employable to compare the shapes of sub-meter resolution, grid-stratifiable, An. 

arabiensis capture point, oviposition, geosampled,tabulated, endmember, LULC estimator distributions, for providing a 

graphical view of how properties such as geolocation scale, and skewness of regressed  habitat data are similar or 

different in two probability, seasonal distributions. Q–Q plots can be used to compare collections of data, or theoretical 

distributions [2]. The use of Q–Q plots to compare two samples of regressed, An. arabensis, aquatic, larval habitat, 

empirical, capture point geosampled, data distributions may be viewed as a non-parametric approach to comparing their 

underlying distributions. A Q–Q plot is generally a more powerful approach to do this than the common technique of 

comparing histograms of the two samples, but requires more skill to interpret [3]. An assessment of "goodness of fit" 

may be generated that is graphical in ArcGIS for generating a numerical summary of eco-georferenceable, grid-

http://www.basic.northwestern.edu/statguidefiles/linreg_ass_viol.html#Lack of independence
https://en.wikipedia.org/wiki/Null_hypothesis
http://www.basic.northwestern.edu/statguidefiles/linreg_ass_viol.html#Non-normality
http://www.basic.northwestern.edu/statguidefiles/linreg_ass_viol.html#Outliers
http://www.basic.northwestern.edu/statguidefiles/sg_glos.html#power
http://www.basic.northwestern.edu/statguidefiles/sg_glos.html#independent
http://www.basic.northwestern.edu/statguidefiles/sg_glos.html#bias
http://www.basic.northwestern.edu/statguidefiles/sg_glos.html#matched samples
http://www.basic.northwestern.edu/statguidefiles/ancova.html
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stratifiable sub-meter resolution, eco-georeferenceable, seasonal hyperproductive foci of endmember, capture point, An. 

arabiensis.  Since Q–Q plots compare distributions, there would be no need for the geosampled, endmember, LULC, 

geo-spectrotemporal values to be observed as endmember pairs, as in a scatter plot.  

The term "probability plot" sometimes refers specifically to a Q–Q plot, sometimes to a more general class of 

plots, and sometimes to the less commonly used P–P plot . The probability plot is a graphical technique for assessing 

whether or not a dataset follows a given distribution such as the normal or Weibull. According to Jacob et al. [1] the 

formula for the probability density function of a generalizable, Weibull, malaria, mosquito (i.e., Anopheles  gambiae 

s.l.) endmember LULC, geo-spectrotemporal,grid-stratfiiable, optimizable  distribution is 

f(x)=γα(x−μα)(γ−1)exp(−((x−μ)/α)γ)x≥μ;γ,α>0where γ is the shape parameter, μ is the aquatic, larval habitat, 

endmember, signature,  geosampled geolocation parameter and α is the scale parameter. The case where μ = 0 and α = 1 

is called the standard Weibull distribution[2]. In Jacob et al. [1] the case where μ = 0 in an An. arabiensis forecast, 

vulnerability regression model was the 2-parameter Weibull distribution. The equation for the standard Weibull 

distribution then reduced the malaria, mosquito, oviposition, regression distribution to f(x)=γx(γ−1)exp(−(xγ))x≥0;γ>0. 

The authors of Jacob et al. [1] plotted the geosampled sub-meter resolution, grid-stratified, time series, oviposition, 

mosquito, endmember, aquatic, larval, habitat data against a theoretical distribution in such a way that the capture 

points formed approximately a straight line. According to the authors departures from this straight line then indicated 

departures from the specified distribution. 

The correlation coefficient associated with the linear fit to the data in the probability plot is a measure of the 

goodness of the fit [2]. Estimates of the location and scale parameters of malaria, mosquito, aquatic, larval habitat 

distribution are given by the intercept and slope [1]. Probability plots may be generated for several competing 

oviposition, malaria, mosquito, capture point, endmebr LULC, regression distributions to determine which provides the 

best fit. The probability plot generating the highest correlation coefficient rendered from say for example,a sub-meter 

resolution, mosquito, endmeber, signature, vulnerability, prognosticative model may be the best choice since it may 

generate the straightest probability plot. 

For sub-meter resolution, malaria mosquito, oviposition tabulated LULC endmember distributions with shape 

parameters (not counting location and scale endmember parameters), may also generate a probability plot. For example, 

for a capture point, regressed, malaria, mosquito, oviposition foci, empirical distribution with a single shape parameter, 

the probability plot correlation coefficient (PPCC) plot may provide an method for estimating the an unknown, 

hyperrpoductive,  eco-georeferenceable,oviposition, geo-spectrotemporal, ento-ecoepidemiological, endmember LULC 

signature, forecast, vulnerability  model.  The probability plot correlation coefficient may be a quantity derived from the 

Q–Q plots. The model may measure the agreement of a fitted distribution with observed geosampled oviposition, 

endmember, grid-stratifiable, malaria, mosquito data which  may be also  used as a means of fitting a distribution to the 

data. After the fit,  outliers may be detected by examining the regression residuals or the high-leverage capture points.  

The relationship between prevalence of each
 
individual potential,explanatorial, capture point, aquatic, larval 

habitat, sub-meter resolution, predictor variable geosampled in the  Mwea study site was investigated
 
by single variable 

regression
 
analysis in PROC MIXED.  We employed the regression line  to generate a 

pseudo R
2
 value where the first term was the total variation in the response y (larval density count of seasonal, 

geosampled, An.  arabiensis capture point habitats) and the second term was the variation in mean response based on 

the sampled parameters. The third term was the residual value in the model estimates. Squaring each of these terms and 

adding over all of the sampled ento- epidemiological, endmember LULC observations generated the 

equation . This equation was then written as SST = SSM + SSE, where SS was 

notation for sum of squares and T, M, and E were the notation for total, model, and error, respectively. The square of 

the sample correlation was equal to the ratio of the estimates while the sum of squares was related to the total sum of 

squares: r² = SSM/SST. This formalized the interpretation of R
2
 as explaining the fraction of variability in the geo-

spectrotemporal, geosampled, immature, An. arabiensis, aquatic, larval habitat  data explained by the regression model.  

The sample variance sy² was equal to , which in turn was equal to the SST/df, the total sum of squares 

divided by the total DF. A regression equation was then constructed using the mean square model (i.e., MSM) 

http://www.basic.northwestern.edu/statguidefiles/sg_glos.html#residuals
http://www.basic.northwestern.edu/statguidefiles/sg_glos.html#leverage
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= , which was equal to the SSM/df. The corresponding mean square error (i.e, MSE) was , 

which was equal to SSE/df and the estimate of the variance about the regression line (i.e., σ²).  The MSE is an estimate 

of σ² for determining whether or not the null hypothesis is true [2]. 

 

For the geo-spectrotemporal, geosampled, eco-georeferenceable, sub-meter resolution, grid-stratifiable, 

explanatoryendmeber LULC variables,(p) the capture point, An. arabiensis, aquatic, larval, habitat modeled the DFM 

which in this research was  equal to p, and the error degrees of freedom (dfe) which was equal to (n - p - 1), and the 

total degrees of freedom (dft) which was equal to (n - 1), the sum of DFM and DFE. The explanatory and response  

ento-ecoepidemiological, endmeber LULC variables were numeric. The relationship between the mean of the response 

variable (i.e. total, geosampled, density, larval count) and the level of the explanatory, geo-spectrotemporal eco-

georeferenced, sub-meter resolution, grid-stratified,  predictor covariates in the regression equation were assumed to be 

approximately linear (i.e.,straight line). The corresponding table generated each the clinical, field and remote-sampled 

malaria-related, aquatic, larval habitat, geoclassified, endmember parameters in SAS. 

 

In the multiple regression analyses, the test statistic MSM/MSE had an F (p, n - p - 1) distribution. The null 

hypothesis  was 1 = 2 = ... = p = 0, and the alternative hypothesis was at least one of the geo-spectrotemporally 

geosampled, An. arabiensis, aquatic,    larval habitat,  endemic, transmission-oriented,  predictive, endmember, risk   

parameters j  0, j = 1, 2, ,,, p. The F test did not indicate which of the parameters j was not equal to zero, only 

that at least one of them was linearly related to the capture point, endmebr LULC, grid-stratified, response variable. The 

ratio SSM/SST = R² (i.e., squared multiple correlation coefficient) was the proportion of the variation in the response 

variable that was explained by the immature, habitat data. The square root of R² (i.e., the multiple correlation 

coefficient) was the correlation between the geosampled, An. arabiensis, aquatic, larval, habitat geo-spectrotemporal, 

endmeber LULC observations (i.e., yi) and the fitted values (i.e., i.). Additionally, from the sampling distribution, 

generated from the geosampled t parameters, the probability of obtaining an F was large or larger than the one was 

calculated. The t-test and the F-test were equivalent; the relation between ANOVA and t was given by F = t
2
. 

Significant differences by ANOVA were noted for the geosampled, larval count density discrete integer values of the 

seasonal, hyperproductive capture points throughout the sampling frame (F = 41.3, DF = 1). 

A  Poisson regression analyses was then constructed in PROC MIXED to determine the relationship between 

the geosampled, An. arabiensis, frequency, signature, sub-mter resolution,  larval, density, count data and the sampled 

habitat LULC characteristics. The Poisson models were built using the clinical, field and remote-sampled habitat, 

endemic transmission-oriented,  predictive risk   data. A negative binomial regression had to be employed, however, as 

an examination of the data indicated that overdispersion was a significant problem in the Poisson model. The Poisson 

distribution is a special case of the negative binomial distribution, where the mean approximates the standard deviation 

(see Neter 1992). We assumed that the log of the mean was a linear function of independent variables, log () = 

intercept + b1*X1 +b2*X2 + ....+ b3*Xm in the geo-spectrotemporal geosampled, eco-georeferenced, sub-meter 

resolution, grid-stratified, capture pointmodel which implied that  was the exponential function of independent 

variables when  = exp (intercept + b1*X1 +b2*X2 + ....+ b3*Xm) (see Jacob et al. 2008b). Therefore, instead of 

assuming that the distribution of the geosampled, aquatic,   larval habitat, eco-georeferenced,. explanatory, endemic, 

transmission-oriented, geo-spectrotemporal, oviposition,    observation, parameter estimates (i.e., Y) was Poisson, we 

were able to assume that Y had a negative binomial distribution. We relaxed the assumption about equality of mean and 

variance (i.e., Poisson distribution property), since the variance of negative binomial was equal to  + k
2 
, where k>= 0 

was a dispersion parameter. The maximum likelihood method was used to estimate k, as well as the geosampled, 

aquatic, larval habitat endmember, parameters of the regression model for log(). For the negative binomial 

distribution, the variance was equal to the mean + k mean
2
 (i.e.,k>= 0) as the negative binomial distribution reduced to 

Poisson when k was 0. 

 

In the regression analyses the null hypothesis was: H0: k=0 and the alternative hypothesis was: Ha: 

k>0.    We recorded the log-likelihood (i.e., LL) for the models we    used the likelihood ratio (LR) test to compute the 

LR statistic using -2(LL) (Poisson) and the LL (i.e., negative binomial). The asymptotic distribution of the LR statistic 



International Research Journal of Computer Science and Application                       

Vol. 2, No. 1, March 2018, pp. 1-181                                                                         

  Available Online at http://acascipub.com/Journals.php 
 

 

 

132 

Copyright © acascipub.com, all rights reserved 

had probability mass of one half at zero and one half – chi-square distribution with 1 df. To test the null hypothesis at 

the significance level , we used the critical value of chi-square distribution corresponding to significance level 2, that  

was  rejection of  H0 , if LR statistic > 
2 

 (1-2 , 1 df).  We generated the log of the mean, , which in this research was a 

linear function of independent variables, log() = intercept + b1*X1 +b2*X2 + ....+ b3*Xm, in the. eco-georeferenced, 

sub-meter resolution, grid-stratified, An. arabiensis,aquatic,  larval habitat endemic trasnmission-oriented  

prognosticative,  vulnerabilty, endmember  model which implied that  was the exponential function of the independent 

variables when   = exp(intercept + b1*X1 +b2*X2 + ....+ b3*Xm).  

A Poisson distribution with parameter λ > 0 was then generated employing the empirical dataset of the An. 

arabiensis, endemic, transmission-oriented, capture point,  oviposition endmember covariates 

by where  was  the base of the natural logarithm (e = 2.71828...) and where  k! was the 

factorial of k.   The positive, real, sampled,  explanatory, covariate coefficient  λ  was then  equal to the 

expected value of X and also to its variance
[e.g., 

.The expected value of a Poisson-distributed 

random variable was then  equal to λ and so was its variance. The coefficient of variation was , while the index 

of dispersion was  1. The mean deviation about the mean in the geo-spectrotemporal geosampled, malaria, mosquito, 

eco-georeferenced, sub-meter resolution, grid-stratified, capture point, regression  model,was 

The mode of a Poisson-distributed random variable with non-integer λ was then  

equal to , which was the largest integer less than or equal to λ. When λ is a positive integer, the modes are λ and λ –

 1(see Homer and Lemeshew 2000) All of the cumulants of the Poisson distribution were then equal to the expected 

value λ in the model residual, vulnerability forecasts. The nth factorial moment of the Poisson distribution was λ
n
.  

Bounds for the median (ν) of the distribution was then quantitated as The higher 

moments mk of the Poisson distribution about the origin were Touchard polynomials in λ: where the 

{braces} denoted Stirling numbers of the second kind The coefficients of the polynomials had a combinatorial meaning. 

In fact, when the expected value of the  Poisson distribution was 1. If are independent, 

and , [3]. Further since the  Poisson distributions rendered by the empirical dataset of. The 

geo-spectrotemporal geosampled, eco-georeferenced, sub-meter resolution, grid-stratified, An. arabiensis endemic 

transmission oriented, observations were infinitely divisible probability distributions. The directed Kullback–Leibler 

divergence of Pois(λ0) from Pois(λ) was  given by Bounds for the tail probabilities 

of a Poisson random variable  were then  derived using a Chernoff bound argument where  

 

A  model was constructed  for qualitative estimation of a  linear, An. arabiensis, aquatic, larval habitat, capture 

point, oviposition, endmember estimates with nested-error structure.  These models were written in a matrix notation 

where it was n×p matrix X was a matrix of regressors. The random vectors were independent.  There was no need for a   

zero-mean vector and covariance matrix.  We employed n×n identity matrices. 

 

 We generated the inverse Wishart distribution which was a probability distribution defined by the positive-

definite matrix generated from the geosampled, eco-georeferenced, sub-meter resolution, grid-stratified,  An. 

arabiensis,aquatic larval habitat, endemic trasnmission-oriented  predictive risk –related,capture point, geo-

spectrotemporal covariates. In our Bayesian model we employed the inverse Wishart distribution to generate the 

conjugate prior for the covariance matrix of a multivariate normal distribution. In Bayesian probability theory, if the 

posterior distributions p(θ|x) are in the same family as the prior probability distribution p(θ), the prior and posterior are 
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then called conjugate distributions, and the prior is called a conjugate prior for the likelihood [2]. In this research the 

probability density function of the inverse Wishart was: where B and  were  p x 

p positive definite matrices, and Γp(·) was the multivariate gamma function. If B follows an inverse Wishart 

distribution, denoted as , its inverse has a Wishart distribution .(O'Hagan, and  

Forster 2004). 

The multivariate Gamma function, Γp (·), was a generalization of the Gamma function in the aquatic, larval 

habitat endemic transmission-oriented,  progmosticative, endmember,  risk   model. The Gamma function is an 

extension of the factorial function, with its argument shifted down by 1, to real and complex numbers and as such if n is 

a positive integer: ([2]). The gamma function appears commonly in the probability density 

function of the Wishart and Inverse Wishart distributions (see Neter 1992). 

 

The distribution generated from the geosampled geo-spectrotemporal,eco-georeferenced, sub-meter resolution, 

grid-stratified, aquatic, larval habitat, capture point, endmember data  had an inverse Wishart distribution  

.We then successfully partitioned the matrices A and  with each other using 

 where and  were  pi a x pj matrices.   By so doing we generated  the 

conjugate distribution of the geosampled eco-georeferenced explanatory, aquatic, larval habitat,  predictor covariates by  

employing a  covariance probabilistic approximation  matrix whose prior had a distribution. We 

then performed a eigen-decomposition of a square matrix (i.e., A) into eigenvalues and eigenvectors. We defined  a 

right eigenvector as a column vector  satisfying  where A was a matrix, so  which 

meant  the right eigenvalues had zero determinant, (i.e., ). Similarly we  defined a left eigenvector as a row vector 

satisfying  Taking the transpose of each side  rendered  which  in this research was 

rewritten as We  then rearranged  this equation once again to obtain  which  

generated  The equation, in turn, generated   ,

 where the last step was from the identity  We equated these equations to 0 for A and 

X , which required that  (see Jacob et al. 2011b). We then let  be a matrix formed by the columns of the 

right eigenvectors and be a matrix formed by the rows of the left eigenvectors. We then let  and as 

such    and   and  while,  so  But this 

equation was of the form  CD=DC where D  was a diagonal matrix, so, therefore,  was also diagonal. If A is 

a symmetric matrix, then the left and right eigenvectors are simply each other's transpose, and if  A is a self-adjoint 

matrix (i.e., Hermitian), then the left and right eigenvectors are adjoint matrices (Griffith 2003). In predictive, 

autoregressive, vector arthropod, aquatic, larval, habitat, capture point, risk modeling, a Hermitian matrix is a square 

matrix with complex entries that is equal to its own conjugate transpose – that is, the element in the i-th row and j-th 

column is equal to the complex conjugate of the element in the j-th row and i-th column, for all indices i and j: 

[2]. Using the matrix with eigenvectors , , and and corresponding eigenvalues , , and , 

then an arbitrary vector  was written as   In this research the matrix A generated

so    

Further,  since  …., and , it followed  that  so repeated application of the 

regression-related  matrix to an arbitrary vector resulted  in a vector proportional to the eigenvector with largest  

eigenvalue. 
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We determined probabilities for the geo-spectrotemporal geosampled, eco-georeferenced, sub-meter 

resolution, grid-stratified, autoregressive model. Thereafter , we used  where  Wt was  a P-standard 

brownian motion ( i.e.,a standard brownian motion under the probability measure P) we generated: 

 Then we employed the using the Black and Scholes model, the Q-martingale property and  

transferred  to the value of   predictor variable C in the geosampled, sub-meter resolution, grid-stratified, An. arabiensis, 

model. 

 

Since the Girsanov theorem states that there is a probability measure Q such that is a Q-standard brownian 

motion and  are Q-martingales [2]. 

in this research : . We then defined the S set by: 

which rendered .This quantity was 

computed by splitting each of its terms. The second  term in the model generated 

  using  We then used the condition 

which defined  . The properties of the brownian motions allowed us to write: the 

expression for the geo-spectrotemporal geosampled, eco-georeferenced, sub-meter resolution, grid-

stratified. An. arabiensis, larval habitat, distribution model which generated .  

Using the first term we were able to generate .The log-

normal property of the underlying motion rendered: and 

 . 

 

 We then generated the inverse-gamma distribution which was a univariate specialization of the inverse–

Wishart distribution generated using the geosampled eco-georeferenced, An. arabiensis, aquatic, larval habitat endemic 

trasnmission-oriented  predictive risk –related, explanatory,endmember, predictor covariates. The pdf was 

 while the mean of the model was for α > 1. The variance was  for α > 2. 

The skewness was  for α > 3, while the kurtosis was  for α > 4 and the entropy 

was . The moment generating function was   while the 

characteristic function was .  

 The geo-spectrotemporal geosampled, eco-georeferenced, sub-meter resolution, grid-stratified model revealed 

that when  p = 1 (i.e. univariate) and α = m / 2, and  x=B  and the pdf of the inverse-Wishart distribution 
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became The pdf of the gamma distribution was  and we defined 

the transformation then the resulting transformation was: 

 Replacing k with α; θ 
− 1

 with β; and 

y with x results in the inverse-gamma pdf shown above 

 The inverse gamma distribution’s pdf was then defined over the support x>0 using 

the equation with shape parameter α and scale parameter β.  The cumulative 

distribution function was then quantified using the regularized gamma 

function where the numerator  in the ento-ecoepidemiological, malaria, mosquito, 

oviposition, aquatic, larval, habitat model was the upper incomplete gamma function and the denominator was the 

gamma function. The regularized gamma functions are defined by and  where and are 

incomplete gamma functions and is a complete gamma function. 

We then employed methods in PROC MCMC to calculate the multivariate gamma function for the 

geosampled, eco-georeferenced, sub-meter resolution, grid-stratified, An. arabiensis, capture point, aquatic, 

endmember,  larval habitat, endemic, trasnmission-oriented,  predictive, risk   model. This was constructed using 

where S>0 and as such S was positive-definite.  We used the gamma 

function to determine the recursive relationships in the geo-spectrotemporal, geosampled, eco-georeferenced,capture 

point, aquatic, larval habitat, predictor covariates 

using . Thereafter, we 

quantitated :Γ1(a) = Γ(a), Γ2(a) = π
1 / 2

Γ(a)Γ(a − 1 / 2) and Γ3(a) = π
3 / 2

Γ(a)Γ(a − 1 / 2)Γ(a − 1). We then defined the 

multivariate digamma function in the larval habitat, endmember, forecast, vulnerability  model as 

and the general polygamma function 

as .  

The digamma function in the capture point, oviposition, An. arabiensis model was defined as the logarithmic 

derivative of the gamma function:   This equation then calculated the digamma function 

which was expressed as . We then generated the following 

expression: Since in this 

research it followed that . 

 

 Poissonian distribution for an interaction model was then generated. These results provided information for 

estimates of the prior distribution of main effect coefficients for the Bayesian analysis. The values for the geo-

spectrotemporal geosampled, eco-georeferenced, sub-meter resolution, grid-stratified, An. arabiensis, capture point, 

endmember, parameter estimates and standard errors were then used as mean values and standard errors to 

parameterized prior expected values for the explanatory, aquatic, larval habitat, oviposition,  predictor covariates.  The 

prior expected mean value for the error term was assumed to be zero (‘0’), with a standard deviation of 0.01. Initial 
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values for the MCMC chains were generated. Three MCMC chains estimated for the intercept which appeared to 

converge within the first 1,000 samples. The first 1,000 samples were discarded to allow the model to stabilize (i.e., 

known as “burn in”), and the next 10,000 samples were used to derive endmember, parameter estimates. The MCMC 

was able to numerically calculate multi-dimensional integrals. In our MCMC methods, an ensemble of "walkers" 

moved around randomly. At each capture point where the walker stepped, the integrand value at that point was counted 

towards the integral. The walker then May made a number of tentative steps around the area, looking for a place with 

reasonably high contribution to the integral to move into next. Random walk methods are a kind of random simulation 

or Monte Carlo method [2].However, whereas the random samples of the integrand used in a conventional Monte Carlo 

integration are generally statistically independent, those used in our MCMC were correlated[5]. A Markov chain was 

then constructed in such a way as to have the integrand as its equilibrium distribution. We generated an improvement in 

model fit, as variables are added to the Bayesian model. 

All residual estimates from the geo-spectrotemporal geosampled, eco-georeferenced, sub-meter resolution, 

grid-stratified, An. arabiensis Bayesian model were then evaluated in a spatial error (SE) model. An autoregressive 

model was employed that used a sampled habitat variable, Y, as a function of nearby sampled habitat Y values [i.e., an 

autoregressive response (AR) or spatial linear (SL) specification] and/or the residuals of Y as a function of nearby Y 

residuals [i.e., an AR or SE specification]. Distance between sampled habitats was defined in terms of an n-by-n 

geographic weights matrix, C, whose cij values were 1 if the sampled An. arabiensis, aquatic, larval habitat,capture 

point, hyperproductive, unknown geolocations i and j were deemed nearby, and 0 otherwise. Adjusting this matrix by 

dividing each row entry by its row sum, with the row sums given by C1, converted this matrix to matrix W . The n-by-1 

vector x = [x1 xn]
T   

then contained measurements of a quantitative,capture point, endmember variable for n spatial 

units and n-by-n spatial weighting matrix W. The formulation for the Moran's index of spatial autocorrelation used in 

this research was: where with i ≠ jThe values wij were spatial weights 

stored in the symmetrical matrix W [i.e., (wij = wji)] that had a null diagonal (wii = 0). In this research the matrix was 

initially generalized to an asymmetrical matrix W. Matrix W can be generalized by a non-symmetric matrix W* by 

using W = (W* + W*
T
)/2 [ . Moran's I was rewritten using matrix notation: 

where H = (I - 11
T
/n) was an orthogonal projector verifying that H = 

H
2
, (i.e., H was independent). Features of matrix W for analyzing sampled covariates of the geo-spectrotemporal 

geosampled, eco-georeferenced, sub-meter resolution, grid-stratified, An. arabiensis, aquatic, larval habitats include that 

it: is a stochastic matrix, expresses each observed value yi as a function of the average of habitat location i's nearby 

habitat larval/pupal counts, and allows a single spatial autoregressive parameter, ρ, to have a maximum value of 1. 

A SAR model specification was then used to describe the An. arabiensis larval habitat autoregressive variance 

uncertainty estimates. A spatial filter (SF) model specification was also used to describe both Gaussian and Poisson 

random variables. The resulting SAR model specification took on the following form: where 

μ was the scalar conditional mean of Y, and ε was an n-by-1 error vector whose elements were statistically independent 

and identically distributed (iid) normally random variates. The spatial covariance matrix for equation (3.1), using the 

geo-spectrotemporal, geosampled,capture point, endmember, aquatic, larval habitat covariates was E [(Y - μl)' (Y - μl)] 

= Σ = [(I - ρ W') (I - ρ W)]
-1

σ
2
, where E (●) denoted the calculus of expectations, I was the n-by-n identity matrix 

denoting the matrix transpose operation, and σ
2 

was the error variance. However, when a mixture of positive and 

negative spatial autocorrelation is present in an aquatic habitat, ento-ecoepidemiological, forecast, vulnerability model, 

a more explicit representation of both effects leads to a more accurate interpretation of empirical results. Alternately, 

the excluded values may be set to zero, although if this is done then the mean and variance must be adjusted   

In this research, two different spatial autoregressive parameters appeared in the spatial, covariance matrix, An. 

arabiensis, aquatic, larval,  habitat, model specification, which for an SAR model specification became: 

where the diagonal matrix of autoregressive parameters, <ρ >diag, 

contained two geosampled parameters: ρ+ for those An. arabiensis, aquatic,larval, habitat pairs displaying positive 

spatial dependency, and ρ. for those endmember habitat pairs displaying negative spatial dependency. For example, by 
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letting σ
2 

= 1 and employing a 2-by-2 regular square tessellation, 

 

For the vector ,enabled positing a positive relationship between the hyperproductive, geosampled, An. 

arabiensis habitats by covariates, y1 and y2, a negative relationship between covariates, y3 and y4, and, no relationship 

between covariates y1 and y3 and between y2 and y4. This yielded: 

(3.2)where I+ was a binary 0-1 

indicator variable which denoted those geosampled, eco-georeferenced, sub-meter resolution, grid-stratified, An. 

arabiensis habitat, endmember covariates displaying positive spatial dependency, and I- was a binary 0-1 indicator 

variable denoting those geosampled habitats displaying negative spatial dependency, using I+ + I- = 1. Expressing the 

preceding 2-by-2 example in terms of equation (3.3) yielded: 

 

If either ρ+ = 0 (and hence I+ = 0 and I- = I) or ρ- = 0 (and hence I- = 0 and I+ = I), then equation (3.3) reduces to 

equation (3.1).  This eco-georeferenced, sub-meter resolution, grid-stratified, capture point, endmember, uncoalesced, 

geo-spectrotemporal, indicator variables classification was made in accordance with the quadrants of the corresponding 

Moran scatterplot generated employing the endemic, transmission-oriented, oviposition,    observational,  An. 

arabiensis, aquatic, larval habitat covariates geosampled in the eco-epidemiological, Mwea study site. 

If positive and negative spatial autocorrelation processes counterbalance each other in a mixture, the sum of 

the two spatial autocorrelation parameters--(ρ+ + ρ.) will be close to 0. In this research, Jacobian estimation was 

implemented by utilizing the differenced indicator, geosampled, eco-georeferenced, sub-meter resolution, grid-

stratified,  An. arabiensis aquatic, larval, habitat, endmember variables (I+ - γ I-), estimating ρ+ and γ with maximum 

likelihood techniques, and setting . The Jacobian generalizes the gradient of a scalar valued function of 

multiple variables which itself generalizes the derivative of a scalar-valued function of a scalar]. A more complex 

capture point, seasonal, hyperproductive, An. arabiensis habitat specification was then posited by generalizing these 

binary indicator variables. We used F: R
n 

→ R
m 

as a function from Euclidean n-space to Euclidean m-space which was 

generated using the distance between sampled riverine habitat covariates. Such a function was given by m habitat 
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covariate (i.e., component functions), y1(x1, xn), ym(x1, xn). The partial derivatives of all these functions were organized 

in an m-by-n matrix, the Jacobian matrix J of F, which was as follows:  

This matrix was denoted by JF (x1, an) and . The i Th row (i = 1, m) of this matrix was the gradient 

of the i
th 

component function yi :(  yi). In these analyses p was a geosampled, An. arabiensis, aquatic, larval habitat, 

endmember covariate in R
n 

and F (i.e., geosampled larval/pupal count) was differentiable at p; its derivative was given 

by JF (p). The model described by JF (p)) was the best linear approximation of F near the point p, in the sense that: 

. The spatial structuring was achieved by constructing a linear 

combination of a subset of the eigenvectors of a modified geographic weights matrix, using (I - 11'/n) C (I - 11'/n) that 

appeared in the numerator of the Moran's Coefficient (MC) Spatial autocorrelation can be indexed with a MC, a product 

moment correlation coefficient [  

 A subset of eigenvectors was then selected with a stepwise regression procedure. Because (I - 11'/n) C (I - 

11'/n) = E Λ E', where E is an n-by-n matrix of eigenvectors and Λ is an n-by-n diagonal matrix of the corresponding 

eigenvalues the resulting geo-spectrotemporal geosampled, eco-georeferenced, sub-meter resolution, grid-stratified,  

An. arabiensis model specification was given by: where μ the scalar mean of Y, Ek was an n-by-k 

matrix containing the subset of k <<n eigenvectors selected with a stepwise regression technique, and β was a k-by-1 

vector of regression coefficients [  

A number of the eigenvectors were extracted from (I - 11'/n) C (I - 11'/n), which were affiliated with 

geographic patterns of the geosampled An. arabiensis habitat, endmember covariates, in the study site, portraying a 

negligible degree of spatial autocorrelation. Consequently, only k of the n eigenvectors was of interest for generating a 

candidate set for a stepwise regression procedure. Candidate eigenvector represents a level of spatial autocorrelation 

which can account for the redundant information in orthogonal riverine larval habitat map patterns 

Of note is that because the 2-by-2 square tessellation rendered a repeated eigenvalue. To identify spatial 

clusters of geosampled, eco-georeferenced, sub-meter resolution, grid-stratified, aquatic, An. arabiensis larval habitats, 

Thiessen polygon surface partitioning were generated to construct geographic neighbor matrices, which also were used 

in the spatial autocorrelation analysis. Entries in matrix were 1, if two sampled, larval habitats shared a common 

Thiessen polygon boundary and 0, otherwise. Next, the linkage structure for each surface was edited to remove unlikely 

geographic neighbors to identify pairs of sampled An. arabiensis aquatic larval, habitats sharing a common Thiessen 

polygon boundary. Attention was restricted to those map patterns associated with at least a minimum level of spatial 

autocorrelation, which, for implementation purposes, was defined by |MCj/MCmax| > 0.25, where MCj denoted the jth 

value and MCmax, the maximum value of MC. This threshold value allowed two candidate sets of eigenvectors to be 

considered for substantial positive and substantial negative spatial autocorrelation respectively. These statistics 

indicated that the detected negative spatial autocorrelation may be considered to be statistically significant, based upon 

a randomization perspective. Of note, is that the ratio of the PRESS (i.e., predicted error sum of squares) statistic to the 

sum of squared errors from the MC scatterplot trend line was 1.27 which was well within two standard deviations of the 

average standard prediction error value (roughly 1.18) for a sampled  larval habitat in the Mwea study site. Because 

larval/pupal counts were being analyzed, a Poisson spatial filter model specification was employed in this research.  

Detected overdispersion (i.e., extra-Poisson variation) results in its mean being specified as gamma distributed. 

The model specification was written as follows: where μi was the expected 

mean larval/pupal count for habitat location i, μ was an n-by-1 vector of expected larval/pupal counts, LN denoted the 

natural logarithm (i.e., the generalized linear model link function), α was an intercept term, and η was the negative 
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binomial dispersion parameter. This log-linear equation had no error term; rather, estimation was executed assuming a 

negative binomial random variable. 

The eigenfunctions of a geo-spectrotemporally, spatial, weighted, geosampled, eco-georeferenced, sub-meter 

resolution, grid-stratified, An. arabiensis, aquatic, larval habitat covariance matrix were then determined. The upper and 

lower bounds for a spatial matrix generated using Morans indices (I) can be given by λmax (n/1
T
W1) and λmin (n/1

T
W1) 

where λmax and λmin which are the extreme eigenvalues of Ω = HWH .Hence, in this research, the eigenvectors of Ω were 

vectors with unit norm maximizing Moran's I. The eigenvalues of this matrix were equal to Moran's I coefficients of 

spatial autocorrelation post-multiplied by a constant. Eigenvectors associated with high positive (or negative) 

eigenvalues have high positive (or negative) autocorrelation. 

The eigenvectors associated with eigenvalues with extremely small absolute values correspond to low spatial 

autocorrelation and are not suitable for defining spatial structures .The diagonalization of the spatial weighting matrix 

generated from the clincial,  field and remote-sampled, endmember aquatic, larval  habitat covariate coefficients 

consisted of finding the normalized vectors ui, stored as columns in the matrix U = [u1 un], satisfying: 

where Λ = diag (λ1 λ n), and for i ≠ j. Note that 

double centering of Ω implied that the eigenvectors ui generated from the ento-ecological, geosampled, An. arabiensis, 

immature, habitat covariates were centered and at least one eigenvalue was equal to zero. Introducing these 

eigenvectors in the original formulation of Moran's index lead to: 

 (3.4.)        

Considering the centered vector z = Hx and using the properties of idempotence of H, equation (3.5) was 

equivalent to:  (3.6). We then transformed the autocorrelation indicators to geo-

spectrotemporal geosampled, eco-georeferenced, sub-meter resolution, grid-stratified, capture point, correlation 

coefficient as the eigenvectors ui and the vector z were centered the predictive, sub-meter resolution, grid-

stratfiaible,LULC equation was rewritten: (3.7 Here,, r was the 

number of null eigenvalues of Ω (r ≥ 1). These eigenvalues and corresponding eigenvectors were removed from Λ and 

U respectively. Equation 2.7 was then strictly equivalent to: Moreover, it was 

demonstrated that Moran's index for a given eigenvector ui was equal to I (ui) = (n/1
T 

W1) λ i so the equation was 

rewritten: The term cor
2 

(ui, z) represented the part of the variance of z that was explained 

by ui in the habitat model z = β i ui+ ei. This quantity was equal to . By definition, the eigenvectors ui 

were orthogonal, and therefore, regression coefficients of the linear models z = β i ui+ ei were those of the 

multiple,malaria, mosquito, forecast, vulnerability,ovispoition, eco-endmember, LULC, regression model z = Uβ + ε = 

β iui + + β n-r un-r + ε. 

Next, the distribution of the error residuals in the An. arabiensis,capture point, aquatic, larval, habitat model, 

autocovariance matrix. The maximum value of I was obtained by all of the variation of z, as explained by the 

eigenvector u1, which corresponded to the highest eigenvalue λ1 in the spatial autocorrelation error matrix. Here, cor
2 

(ui, z) = 1 (and cor
2 
(ui, z) = 0 for i ≠ 1) and the maximum value of I, was deduced for Equation 3.3), which was equal to 

IMAX = λ1 (n/1
T
W1). The minimum value of me in the error matrix was obtained as all the variation of z was explained 

by the eigenvector un-r corresponding to the lowest eigenvalue λn-r generated in the endmember habitat model. This 

minimum value was equal to Imin = λn-r (n/1
T
W1). If the ecological sampled predictor variable was not spatialized, the 
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part of the variance explained by each eigenvector was equal, on average, to cor
2 

(ui, z) = 1/n-1. Because the clinical, 

field and remote-sampled,LULC. habitat variables in z were randomly permuted; it was assumed that we would obtain 

this result. In this research the set of n! Random permutations, revealed 

that . It was easily demonstrated that and it 

followed that . 

 The geosampled, eco-georeferenced, explanatory, geo-spectrotemporal geosampled, eco-georeferenced, sub-

meter resolution, grid-stratified, malaria mosquito, capture point, predictor covariates were then imput into an 

eigenfunction decomposition algorithm to quantify autocorrelation error coefficients in the linear residual variance 

estimates. Results indicated that negligible PSA was detected for the An. arabiensis, geo-spectrotemporal, aquatic, 

larval, habitat data. Eigenvectors were extracted from the matrix (I−11′/n) C (I−11′/n), employing the ento-ecological, 

geosampled predictor variables. In this research, denoting the autoregressive parameter captured the latent geo-

spatiotemporal autocorrelation in the aquatic, larval habitat endemic transmission-oriented,  predictive, risk   model. 

This quantification involved ρ, a conditional autoregressive covariance specification, which involved the matrix (I - ρ 

C), where I was an n-by-n identity matrix. The residual autocorrelation error components were calculated as the matrix 

C raised to the power 1 (i.e., only adjacent geosampled, aquatic, larval, habitat,LULC data were involved in the 

autoregressive function), which was a first-order specification, with the autoregressive term being CY. An important 

matrix was then generated from C1, which was the vector of the number of geosampled, geo-spectrotemporal, An. 

arabiensis, aquatic, larval habitat, eco-georeferenced neighbors in the Mwea study site.  

 

In this research, the inverse of the elements of C1 were inserted into the diagonal of a diagonal matrix, (i.e., D
-

1
) rendering matrix W = D

-1
C which became a stochastic matrix (i.e., each of its row sums equaled 1). One appealing 

feature of this matrix was that the autoregressive term became WY, which generated averages, rather than sums, of the 

neighboring geosampled larval habitat parameter estimate values. Because a covariance matrix for a vector insect larval 

habitat distribution model must be symmetric (Jacob et al. 2005b), we used a matrix W specification with a conditional 

autoregressive model by making the individual-sampled, geo-spectrotemporal geosampled, eco-georeferenced, sub-

meter resolution, grid-stratified, aquatic. larval habitat variance nonconstantemploying   (I - ρ D
-1

C)D
-1 

= (D
-1 

- ρ D
-1

CD
-

1
). An appealing feature of this version for the larval habitat, endemic, transmission-oriented,  LULC, prognosticative, 

endmember, signature risk   model was that it restricted values of the autoregressive parameter to the more intuitively 

interpretable range of 0 ≤ ≤ 1. The aquatic, larval, habitat model then furnished an alternative specification which was 

also written in terms of matrix W. The spatial covariance was then a function of the matrix (I - ρ CD
-1

) (I - ρD
-1

C) = (I - 

ρ W
T
) (I - ρ W), where T denoted the matrix transpose. The resulting matrix was symmetric, and was considered a 

second-order specification, as it included the product of two spatial structure matrices (i.e., W
T
W), which also restricted 

values of the autoregressive parameter to the more intuitively interpretable range of 0 ≤ ≤ 1. 

 

Positive and negative spatial autocorrelationm spatial filter, component pseudo-R
2
 values were attained . These 

values did not exactly sum for the complete spatial filter; however, they are very close to their corresponding totals, 

suggesting that any induced multicollinearity was quite small. A generalized linear model (GLM) was then extended to 

account for quantitating latent, non-spatial , capture point, endmember, correlation effects, which allowed inferences to 

be drawn for a much wider range of eco-geographic sampling configurations generated from the geosampled eco-

georefernced, An. arabiensis,capture point,seasonal, hyperproductive, aquatic, larval habitats than those utilized by 

employing a GLMM.
 
The GLMM included a random effect, which was specified as a random intercept that was 

assumed to be normally distributed with a mean of zero, a constant variance, and zero spatial autocorrelation. This 

varying intercept term compensated for the non-constant mean associated with the negative binomial model general 

linear model specification. The spatial structuring of random effects was implemented with a conditional autoregressive 

model and was achieved in this research with a spatial filter. The spatial autocorrelation components revealed 11% 

redundant information in the ecologically sampled datasets GLMM estimation  

 

We then listed the improvements of fit in the adjusted and unadjusted models for all model specifications and 

random error in the spatial analyses. The unadjusted model compared the univariate model to a model containing only 

the intercept term. Interactions were examined, and significant interactions were included.  Improvement of fit was also 
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calculated for the first-order interaction models to determine whether including significant interactions improved fit 

compared to the full main effects model. Convergence problems prevented obtaining results of a saturated model to 

determine whether the presented model fit as well as the saturated model. 

Bayesian inference derives the posterior probability as a consequence of two antecedents, a prior probability 

and a "likelihood function" derived from a probability, geo-spectrotemporal eco-georeferenced, sub-meter resolution, 

grid-stratified,  vector arthropod-related  endemic transmission oriented risk model for the geosampled, An. arabiensis, 

endemic, transmission oriented, aquatic, larval, habitat data. Bayesian inference computed the posterior probability 

according to Bayes' rule: .  H stands for any hypothesis whose probability may be affected 

by data[2]. Often there are competing hypotheses, from which one chooses the most probable. The evidence E 

corresponded to the geosampled habitat data that were not used in computing the prior probability. , the prior 

probability, is the probability of  H before E is observed[3]. This indicated that the  previous endmember, capture point, 

hyperproductive, prognosticated estimate of the probability was true. Further in the residual forecasts,  was the 

posterior probability which was also the probability of H given E, (i.e., after E is observed). This allowed the 

probability of a hypothesis given the observed evidence. , to be determined by quantitating the probability of 

observing E given the likelihood estimates in the  model. This indicated the compatibility of the evidence of the given 

hypothesis.  (i.e.,A Bayesian probabilistic paradym can determine explanatory endemic An. arabiensis –related, 

capture point  covariates). This model was the marginal likelihood or "model evidence". Note that what affected the 

value of  in the risk model for different values of H was only the factors and , which both 

appeared in the numerator, and hence the posterior probability was proportional to both. In words, the posterior 

probability of a hypothesis was calculable by a combination of the inherent likeliness of a hypothesis (i.e., the prior) 

and the compatibility of the observed evidence with the hypothesis (i.e., the likelihood)..  

We noticed that the geo-spectrotemporal geosampled, eco-georeferenced, sub-meter resolution, grid-stratified, 

An. arabiensis endemic transmission-oriented distribution had the following formula: 

where was the normalizing constant of the 

distribution: This was then expanded as 

follows:

  

 

The characteristic function of the Wishart distribution was then   In other 

words, where E[⋅] denoted expectation.(Here Θ and I were te matrices which 

had  the same size as V , I was the identity matrix; and i was the square root of −1. The  density function of the inverse 

Wishart was: where X and  were positive definite matrices, and Γp(·) was 

the multivariate gamma function. 

The multivariate gamma function, Γp(·), is a generalization of the gamma function. It is useful in multivariate 

statistics, appearing in the probability density function of the and inverse Wishart distributions[2]. In this research the 

Bayesian endmber, autoicorrelation, prognosticative, spatial filter model possessed two equivalent definitions. One was 

 where S>0 whenst S was positive-definite. The other one, more 
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useful in practice,for determining geeolocations of eco-georferenced, seasonal, hypeproductive, malaria, mosquito, 

oviposition foci was . From this, we have the recursive, quantitable, optimizable, 

non-frequentistic relationships: 

Hence 

,  and   

We then defined  the multivariate digamma function  in the seasonal, geo-spectrotemporal geosampled, eco-

georeferenced, sub-meter resolution, grid-stratified, predictive endemic transmission, endmember, capture point, 

forecast, vulnerability  rimodel as  and the general polygamma function 

as Since it follows that 

By definition of the digamma function, ψ, 

 As such it mathematically logically  follows that 

 

The marginal and conditional distributions from an inverse Wishart-distributed matrix were then regressively 

quantitated as  which had an inverse Wishart distribution. Partition the matrices A and conformably 

with each other where and are matrices, then we have is 

independent of  and , where  was  the Schur complement of in A  

and . , where  was 

a matrix normal distribution. As such , where ; Further, 

suppose we wish to make inference about a covariance matrix whose prior has a distribution. If 

the capture point,m aquatic, larval habitat, malaria mosquito, observations are independent p-variate 

Gaussian variables drawn from a distribution, then the conditional distribution eill have  a 

distribution, where is times the sample covariance matrix. Because the prior and 

posterior distributions are the same family, we say the inverse Wishart distribution is conjugate to the multivariate 

Gaussian[2]. Due to its conjugacy to the multivariate Gaussian, it is possible to marginalize out (integrate out) the 

Gaussian's parameter . (this is useful because the variance 

matrix is not known in practice, but because is known a priori, and A can be obtained from the data, the right hand 

side can be evaluated directly) The meant that 
85

The variance of each element of 

X:  The variance of the diagonal uses the same formula as above 

with , which simplified to: The covariance of elements of X are given 

by: . 
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The geosampled, geo-spectrotemporal eco-georeferenced, sub-meter resolution, grid-stratified, An. arabiensis, 

aquatic, larval habitats observations were independent p-variate Gaussian variables which were drawn from a 

distribution. The conditional distribution [i.e., ] had a  distribution. Thereafter, 

 was used to generate the sample covariance matrix. In this research the inverse Wishart distribution was 

conjugate to the multivariate Gaussian. Due to its conjugacy to the multivariate Gaussian, it was possible to "integrate 

out" the Gaussian-based, time series, capture point, aquatic, larval, habitat parameters [i.e.,  ]from the other predictor 

variables which in this research generated: .This was 

useful as the variance matrix  from the sampled explanatory predictor covariates was (i.e., the priori) and A was 

directly obtained from the coefficient indicator values. The mean in the endemic, transmission-oriented, vulnerability, 

ento-ecoepidemiological, risk model was; .The variance of each element of B was then 

.The variance of the diagonal used in the larval habitat 

distribution, prognosticative,  model was  also generated using the same formula as above with i = j, which further  

simplified the model  to:  

A univariate specialization of the inverse-Wishart distribution was then the  inverse-gamma distribution. With 

(i.e. univariate) and , and the probability density function of the inverse-Wishart 

distribution becomes i.e., the inverse-gamma distribution, where is 

the ordinary Gamma function. The inverse gamma distribution's probability density function is defined over the support 

with shape parameter and scale parameter . The cumulative 

distribution function is the regularized gamma function where the numerator is the 

upper incomplete gamma function and the denominator is the gamma function. Many math packages allow you to 

compute Q, the regularized gamma function, directly. 

This specification moved the investigation toward Bayesian map analysis, given that the entire clinical,  field 

and remote-geosampled oviposition, geo-spectrotemporal geosampled, eco-georeferenced, sub-meter resolution, grid-

stratified, An. arabiensis aquatic, larval habitat endemic trasnmission-oriented  predictive risk-based   explanatory 

predictor covariates, with the exception of the intercept, were treated as single-valued; whereas, the intercept was 

treated as a distribution of values and was estimated using empirical Bayes techniques. The difference in the deviances 

between a simple model and the more complex model provided the improvement χ
2 
values. We examined all interaction 

between the sampled georeferenced, aquatic,  larval habitat, explanatory, predictor covariates and found that an 

interaction model did not improve the fit therefore; no interaction terms were included in the final model. 

 

 We could not examine the improvement of fit between a saturated model and the full effects, geo-

spectrotemporal geosampled, eco-georeferenced, sub-meter resolution, grid-stratified, forecast, vulnerability, 

ovisposition, risk model, as the number of the geosampled parameters that needed to be estimated exceeded the 

maximum number that could estimate. To derive the improvement of fit values listed in Table 4, the posterior mean 

deviance values were obtained with Deviance Information Criterion (DIC) spatial analytical tools.  We focused on a 

spatial consideration of the local DIC measure for model selection and goodness-of-fit evaluation. We used a 

partitioning of the DIC into the local DIC, leverage, and deviance residuals to assess the local model fit and influence 

for the observations in a Bayesian framework. We also used visualization of the local DIC to assist in model selection 

and to visualize the global and local impacts of adding covariates or endmember, model parameters. DIC statistics were 

generated to identify the best fitting model. In this research, the deviance was defined as - 2 * log (likelihood), where 

'likelihood' was defined as p(y | and theta), including all the normalizing constants: y comprised all stochastic node 
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values and theta comprised the immediate stochastic parents of y. 'Stochastic parents' are the stochastic nodes upon 

which the distribution of y depends, when collapsing over all logical relationships. For example, if y ~ dnorm (mu, tau), 

and if tau is a function of a parameter phi over which a prior distribution has been placed, then the likelihood is defined 

as a function of phi.  The expectation    DD   was used as a measure of geo-spectrotemporal geosampled, eco-

georeferenced, sub-meter resolution, grid-stratified model fitness based on the values of the sampled georeferenced 

explanatory predictor covariate coefficient values. The effective number of parameters included in the model was 

computed as  DDpD  , where was the expectation of . The DIC generated the following statistics: 1) the 

Dbar which was  is the posterior mean of the deviance, 2) Dhat: the  point estimate of the deviance (i.e., -2 * 

log(likelihood)) obtained by substituting the posterior means theta .bar of theta: thus rendering Dhat = -2 * log(p(y — 

theta.bar) 3) pD: this was ’the effective number of parameters which in this research this was provided by pD = Dbar –

Dha and as such pD was the posterior mean of the deviance minus the deviance of the posterior means.. In normal 

hierarchical models, Pad = TR (H) where H is the 'hat' matrix that maps the observed data to their fitted values [25].The 

DIC was then calculated as: DpDIC D  . The DIC value for the final model was 931.6. The DIC value for the 

model was 923.4. 

 

 Median parameter values, as well as the 95% credibility intervals (2.5 percentile and 97.5 percentile 

values)were then derived. As the geo-spectrotemporal eco-georeferenced, sub-meter resolution, grid-stratified, An. 

arabiensis sampling sites increased based on the eco-georeferenced explanatory predictor covariate distance from the 

capture point, the median log-count of  larval count increased. The adjusted model that assumed independence amongst 

the field and remote-sampled explanatory predictor covariates an of the  larval counts fit better that the model that 

adjusted for correlation within the study site based on  the root mean squared error. 

 

We then constructed a Poisson model in SAS GEN MOD. The Poisson process in our analyses was provided by the 

limit of a binomial distribution of the geosampled, explanatorym endemic transmission-oriented, endmember, 

oviposition, An. arabiensis covariate coefficient estimates using (4.1). We viewed the 

distribution as a function of the expected number of density larval count-oriented,  variables using the sample size N for 

quantifying the fixed p  in equation (4.1), which was then transformed into the linear 

equation: .Based on the sample size N, the distribution approached  was 

=

= . 

 

  The GENMOD procedure then fit a GLM to the sampled data by maximum likelihood estimation of the parameter 

vector β. In this research the GENMOD procedure estimated the seasonal-geosampled, geo-spectrotemporal, 

endmember parameters of each model numerically through an iterative fitting process. The dispersion parameter was 

then estimated by the residual deviance and by Pearson’s chi-square divided by the degrees of freedom (d.f.). 

Covariances, standard errors, and p-values were then computed for the sampled endemic transmission-oriented 

covariate coefficients based on the asymptotic normality derived from the maximum likelihood estimation. 

 

Note, that the sample size N completely dropped out of the probability function, which in this research had the same 

functional form for all the geosampled district-level parameterizable,  estimator indicator values (i.e.,  ). As expected, 

the Poisson distribution was normalized so that the sum of probabilities equalled 1. The ratio of probabilities was then 

determined by which was then subsequently, asymptotically expressed as 

. = . 

 

The Poisson distribution revealed that the explanatory covariate coefficients reached a maximum when 

 where g  was the Euler-Mascheroni constant and  was a harmonic number, 

leading to the transcendental equation . The regression model also revealed that the Euler-Mascheroni 

constant arose in the integrals as 
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ò (4 .2).Commonly, integrals that 

renderg  in combination with temporal sampled constants include e-x2

ln xdx = -
1

4
p g -2ln2( )

0

¥

ò which is equal 

to  e-x ln x( )
2
dx =g 2 +

1

6
p 2

0

¥

ò [2]. Thereafter, the double integrals in our district-level, seasonal, malaria, 

mosquito,capture point, eco-endmember, grid-stratifiable,  regression model includedg =
x-1

1- xy( ) ln xy( )
dxdy

0

1

ò
0

1

ò .  

An interesting analog of equation (2.2) in the regression-based model was then calculated as 
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¥

å
This solution was also provided by incorporating Mertens 

theorem [i.e.,
eg = lim

n®¥

1

ln pn

1

1-
1

pi

i=1

n

Õ
] where the product was aggregated over the district-level geosampled values found 

in the empirical ecological datasets. Mertens' 3rd theorem: lim
n®¥

lnn 1-
1

p

æ

è
ç

ö

ø
÷ = e-g

p£n

Õ  is related to the density of prime 

numbers where γ is the Euler–Mascheroni constant [5].By taking the logarithm of both sides in the model, an explicit 

formula for γ was then derived employing

g = lim
x®¥

ln
1

1-
1

p

æ

è

ç
ç
ç
ç

ö

ø

÷
÷
÷
÷

- lnln x
p£x

å

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

. This expression was also rendered coincidently by 

quantifying the data series employing Euler, and equation (2.2) by first replacing lnn b ln(n+1) , in the 

equation 

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was
 



 

 


































n

k
n

n

k

n

k
n kkkk 11 1

1
1ln

1
lim

1
1ln

1
lim



 . 

Additionally, other series in our spectrotemporal, district-level, regression model included the equation (◇) 

whereg = -1( )
n z n( )
n

= ln
4

p
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ø
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2n n+1( )n=1

¥

å
n=2

¥

å  and z (z)  was g = -1( )
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å
 

plus the Riemann zeta 

function. The Riemann zeta function ζ(s) is a function of a complex variables that analytically continues the sum of the 

infinite series
1

ns
n=1

¥

å which converges when the real part of s is greater than 1 where lg is the logarithm to base 2 and the  

 is the floor function [2]. Nielsen[5] earlier provided a series equivalent tog =1-
n
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 which was then added to 0 = -

1

2
+

1

4
+

1

8
+

1

16
+...  to render Vacca's 

formula. Gosper et al. [6] used the sumsg =
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å with  by replacing the undefined I 

and then rewrote the equation as a double series for applying the Euler's series transformation to each of the sampled 

time-series dependent explanatory covariate coefficient estimates. 
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     In the eco-endmember, ovisposition, malaria model  was used as a binomial coefficient, rearranged to achieve the 

conditionally convergent series in the spatiotemporal, ento-ecoepidemiological, endmeber, linear model.  The plus and 

minus terms were first grouped in pairs of the geosampled, covariate, coefficient estimates employing the resulting 

series based on the actual, observational, indicator values. The double series was thereby equivalent to Catalan's 

integral:  









1

0
1

12

1

1

n

dxx
x

n

 . Catalan's integrals are a special case of general formulas due 

to J0 z2 - y2( ) =
1

p
eycosq cos zsinq( )dq

0

p

ò  where J0 z( )is a Bessel function of the first kind [3]. The Bessel function 

is a function Zn x( )  defined in a robust regression model by using the recurrence relations Zn+1 + Zn-1 =
2n

x
Zn and 

Zn+1 - Zn-1 = -2
dZn

dx
[2] which more recently has been defined as solutions in linear models using the differential 

equation   022

2

2
2  ynx

dx

dy
x

dx

yd
x [6]. 

       The Bessel function Jn z( )
 for the LULC, malaria ,model 

was defined by the contour 

integral     


 dtte
i

zJ nttz

n

1/12/

2

1


where the contour enclosed the origin and was traversed in a counter-clockwise 

direction. This explanatory, optimizable, mathematical, explanatory LULC function 

generated: J0 2i z( ) =
1

p
e

1+z( )cosq
cos 1- z( )sinqéë ùûdq

0

p

ò z º1- ¢z and y º1+ ¢z . In mathematics, Bessel functions are 

canonical solutions y(x) of Bessel's differential equation: for an arbitrary real or 

complex number α (i.e., the order of the Bessel function); the most common and important cases are for α an integer or 

half-integer [2]. Thereafter, to quantify the equivalence in the malarial, regression-based, capture point, aquatic, larval 

habitat, parameter estimators, we expanded1 1+ x( )  in a geometric series and multiplied the sampled data feature 

attributes by x2n-1
, and integrated the term wise as in Sondow and Zudilin [6].Other series for
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A rapidly converging limit for  

was then provided by 
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here  was a Bernoulli number. Another limit formula was then provided by the equation

g = - lim
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. 

In mathematics, the Bernoulli numbers Bn are a sequence of rational numbers with deep connections to number theory, 

whereby, values of the first few  explanative, time series,, geosampeld, Bernoulli numbers are 

B0 = 1, B1 = ±
1
⁄2, B2 = 

1
⁄6, B3 = 0, B4 = −

1
⁄30, B5 = 0, B6 = 

1
⁄42, B7 = 0, B8 = −

1
⁄30 [2].  

      Jacob et al. [1] found if m and n are sampled values  and f(x) is a smooth sufficiently differentiable function  in a 

seasonal, malarial-related, geo-spectrotemporal,  ento-ecoepidemiological, endmember regression model which is 

defined for all  the values of x in the interval , then the integral can be approximated by the sum 

(or vice versa) . The Euler–Maclaurin formula then provided expressions 

for quantiating the difference between the sum and the integral in terms of the higher derivatives ƒ
(k)

 at the end points of 

the interval m and n. The Euler–Maclaurin formula provides a powerful connection between integrals and sums which 

can be used to approximate integrals by finite sums, or conversely to evaluate finite sums and infinite series using 

integrals and the machinery of calculus [4]. Thereafter, for the capture point, oviposition, malarial-sampled values, p, 
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we had where B1 = −1/2, B2 = 1/6, B3 = 0, B4 = −1/30, B5 = 0, B6 = 

1/42, B7 = 0, B8 = −1/30, and R which was an error term. Note in this 

research .Hence, we re-wrote the regression-based formula as 

follows:  We then rewrote the equation more elegantly 

as with the convention of   (i.e. the -1
th

 

derivation of f is the integral of the function). Limits to the predictive, signature seasonal, regression model was then 

rendered byg = lim
x®¥

z z z( )( ) - 2x +
4

3

æ
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x

+1 wherez z( )  was the Riemann zeta function. The Bernoulli numbers 

appear in the Taylor series expansions of the tangent and hyperbolic tangent functions, in formulas for the sum of 

powers of the first positive integers, in the Euler–Maclaurin formula and in expressions for certain values of 

the Riemann zeta function [2]. 

    Another connection with the primes was provided by d n( ) =s 0 n( )for the sampled numerical values from 

1 to  in the grid-stratfiable, oviposition, eco-endmember, An. arabiensis, endemic, transmission-oriented, parameter, 

estimator,LULC dataset which in this research was found to be asymptotic to
d k( )
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å
n

~ lnn+ 2g -1. De 

laValléePoussin [7] proved that if a large number n is divided by all primes , then the average amount by which the 

quotient is less than the next whole number is g [2]. An identity for g in our malaria, regression-based, eco-endmember, 

geo-spectral, forecast, vulnerability,LULC  model was then provided by
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modified Bessel function of the first kind,K0 z( )  was a modified Bessel function of the second kind, and 
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where Hn

 was a harmonic number. For non-integer α, Yα(x) is related to Jα(x) by: 

[4]. In the case of integer order n, the function is defined by taking the limit as a non-

integer α tends to n: [2]. In this research, the Bessel functions of the second kind, were denoted by 

Yα(x), and by Nα(x), which were actually solutions of the Bessel differential equation employing a singularity at the 

origin (x = 0).This provided an efficient iterative algorithm for g for the malaria model by computing 
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Infinite products involving g also arose from the 

Barnes G-function using the positive integer n. In mathematics, the Barnes G-function G(z) is a function that is an 

extension of superfactorials to the complex numbers which is related to the Gamma function [3]. In this research, this 

function provided e
-1+1/ 2n( ) 1+
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and also the equation e-2+2/n 1+
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2p
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Õ .The Barnes G-function 

was then linearly defined in our time-series dependent, An. arabiensis, regression-based,ovisposition, ento-

ecoepidemiological, prognosticative, risk model which then generated 
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where γ was the Euler–Mascheroni constant, exp(x) = e

x
, and 

∏ was capital pi notation. The Euler-Mascheroni constant was then rendered by the expressions g = - ¢G 1( ) = -y0 1( ) 

where y0 x( )  was the digamma function
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In mathematics, the digamma function is defined as the logarithmic derivative of the gamma function: 

y x( ) =
d

dx
lnG x( ) =

¢G x( )
G x( )

 where it is the first of the polygamma functions. In our model the digamma function, ψ0(x) 

was then related to the harmonic numbers in that y n( ) =Hn-1 -g  where Hn was the n
th

 harmonic number, and γ was the 

Euler-Mascheroni constant. In mathematics, the n-th harmonic number is the sum of the reciprocals of the first n natural 

numbers[2].The difference between the n
th

 convergent in equation (◇) and  in our district-level regression-based 

model was then calculated by 1
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  where was the floor function which satisfied the 

inequality 1
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å .The symbol g was then  ¢g º eg »1.781072 . This led to the radical representation 

of the geosampled district-level, endmember, grid-stratified, sub-meter resolution, aquatic, larval habitat, covariate 

coefficients as eg =
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a binomial coefficient. Thereafter, another proof of product in the our 

spatiotemporal district-level, malarial regression model was provided by the 

equation p
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.The solution was then made even clearer by 

changingn®n+1. In this research, both these regression-based formulas were also analogous to the product for 

which was then rendered by calculating e =
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The Digamma  was then  computed in the complex plane outside negative 

integersusingo We  evaluated infinite 

sums of rational endmember, aquatic, larval habitat, geo-spectrotemporal functions, (i.e., , where 

p(n) and q(n) were polynomials of n. Performing partial fraction on un in the complex field, in the case when all roots of 

q(n) are simple roots, For the series to converge, we parsimoniously robust;y employed  

 

Hence and With 

the series expansion of higher rank polygamy function a generalized formula can be given 

as provided the series on the left converges[2]. 
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 In this research the digamma function satisfied a reflection formula similar to that of the Gamma function, 

. However, the digamma function satisfies the recurrence relation  

in the malaria, mosquito, oviposition, ento-ecoepidemiological, endmember, forecast, vulnerability model. Thus, ia 

"telescope" measurement 1/x, followed since where Δ was the forward difference operator. This satisfies 

the recurrence relation of a partial sum of the harmonic series in the model output thus implying the formula 

where is the Euler-Mascheroni constant. More generally, 

Actually, is the only solution of the functional equation that 

is monotone on and satisfies [4]. This fact follows immediately from the uniqueness of the function 

given its recurrence equation and convexity-restriction. This implies the useful difference 

equation :  The digamma has a Gaussian sum of the 

form for integers . Here, ζ(s,q) is the Hurwitz 

zeta function and is a Bernoulli polynomial. A special case of the multiplication theorem 

is  and a neat generalization of this is where q must 

be a natural number, but 1-qa not. For positive integers m and k (with m < k), the digamma function may be expressed 

in finite many terms of elementary functions as 

The complex conjugate of a complex number  was defined to be  in the grid-stratifiable, 

sub-meter resolution, ento-ecoepidemiological, forecast, vulnerability model.The conjugate matrix of a matrix 

is the matrix obtained by replacing each element with its complex conjugate, (see Arfken 1985,). 

The complex conjugate is implemented in Mathematica as Conjugate[z].  The matrix obtained from the given matrix A 

by this combined operation  (ie.,conjugate transpose A
H
 of  A) ,.The terms adjoint matrix, adjugate matrix, Hermitian 

conjugate, and Hermitian adjoint are also used, as are the notations and . In this work, A
H
 was used to denote the 

conjugate transpose matrix and  was used to denote the adjoint operator in the An. arabiensis risk model. By 

definition, the complex conjugate satisfied  The complex conjugate is distributive under complex addition, 

 since the 

= = = = an

d distributive over complex multiplication was   

 

There was an extremely important relationship between the autocorrelation and the Fourier transform. This 

may have been related to the Wiener-Khinchin theorem The Wiener–Khinchin theorem (also known as the Wiener–

Khintchine theorem and sometimes as the Wiener–Khinchin–Einstein theorem or the Khinchin–Kolmogorov theorem) 

states that the autocorrelation function of a wide-sense-stationary random process has a spectral decomposition given by 

the power spectrum of that process. For continuous time, the Wiener—Khinchin theorem [2] says that if is a wide-

sense stationary process such that its autocorrelation function (i..e., autocovariance) can be defined in terms of statistical 

expected value E,  and is finite at every lag . As such, there exists a monotone function 

in the frequency domain such that is anthe integral. This is a kind of 

spectral decomposition of the autocorrelation function. F is called the power spectral distribution function, and is a 

statistical distribution function[3]. 

Note that the Fourier transform of did not exist in the malaria model, because stationary random functions 

are not generally either square integrable or absolutely integrable. Nor was assumed to be absolutely integrable in 

the frequencty, signature, LULC model ouutput, so it need not have a Fourier transform  either. But if  is 

absolutely continuous, for example if the process is purely in deterministic in a sub-mter resolution, malaria, mosquito, 
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eco-endmember model for asymptotically geo-spectrotemporally remotetly, targeting, eco-georeferenceable, un-

geosampled,  seasonal, hyperproductive, aquatic, larval habitat, foci then an experimenter may define the power spectral 

density of by taking the derivative of  F, and putting almost everywhere in the model  since the 

theorem simplifies to I Suppose , from  to is a time series (discrete time) 

with zero mean in the model forecasts. Suppose that it is a sum of a finite number of periodic habitat components (all 

frequencies are positive): The variance of is, for a zero-mean function 

then would be given by . If these data were samples taken from an electrical signal, this would be its average 

power (power is energy per unit time, so it is analogous to variance if energy is analogous to the amplitude 

squared).Now, for simplicity, suppose the signal extends infinitely in time, so we pass to the limit as . If the 

average power is bounded, which is almost always the case in reality, then the following limit exists and is the variance 

of the data. Again, for simplicity, we will pass to continuous time, and assume that the signal extends 

infinitely in time in both directions. Then these two 

formulasbecome and  

But obviously the root mean square of either or is , so the variance of  in the 

malaria model was and that of  was . Hence, the power of which comes from the 

component with frequency is . All these contributions add up to the power of .Then the power as a 

function of frequency is obviously , and its statistical cumulative distribution function will 

be . 

 F is a step function, monotonically non-decreasing[2]. Its jumps occur at the frequencies of the periodic 

components of , and the value of each jump is the power or variance of that component. The variance is the 

covariance of the data with itself. If we now consider the same data but with a lag of , we can take the covariance of 

with , and define this to be the autocorrelation function of the signal (or data) 

When it exists, it is an even function of . If the average power is bounded, then 

exists everywhere, is finite, and is bounded by , which is the power or variance of the data. 

It is elementary to show that can be decomposed into periodic components with the same periods as 

: This is in fact the spectral decomposition of over the different frequencies, and is 

obviously related to the distribution of power of over the frequencies: the amplitude of a frequency component of is 

its contribution to the power of the signal now one assumes that r and S satisfy the necessary conditions for Fourier 

inversion to be valid[2]. the Wiener—Khinchin theorem takes the simple form of saying that r and S are a Fourier 

transform pair, and [3]. 

Relations to other matrix operations may be possible for future, ento-ecoepidemiological, forecast, 

vulnerability, aquatic, larval habitat, capture point, An. arabiensis, endemic transmission, risk modeling.  For example 

linearity and associativity may be quantitated employing the Kronecker product  which is  a special case of the tensor 

product, so  the endemic forecasts  are bilinear 

whereby,  and also 

where A, B and C are matrices and k is a scalar. In general A ⊗ B and B ⊗ A 

would be different matrices in a robust, endemic transmission, malaria, mosquito, oviposition, risk model however, A 

⊗ B and B ⊗ A are permutation equivalent, meaning that there exist permutation matrices P and Q such that 
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 Further, if A and B are square matrices in the endemic transmission risk model, then A ⊗ B 

and B ⊗ A would be  even permutation similar, meaning that P = Q
T
. Then the mixed-product property and the inverse 

of a Kronecker product may be determined. For example, if A, B, C and D are matrices of such size that one can form 

the matrix products AC   and BD, then in the vulnerability, forecasts statsically targeting the 

significant endemic trasnmission-oriented, seasonal geosampled  explanatory, endmember,  covariates this would be the 

mixed-product property, because it mixes the ordinary matrix product and the Kronecker product. It  then follows that 

A ⊗ B would be  invertible if and only if A and B are invertible in a dataset of grid-stratified, sub-meter resolution, 

aquatic, larval habitat, covariate coefficients endemic transmission risk model in which case the inverse  would be given 

by Additionally the operation of transposition would be distributive over the Kronecker product 

 in the forecasts. As such a detrminant of the ento-ecoepiemiological, predictive, risk model 

may be qunatiated. For example, if we let A be an n × n matrix and let B be a p × p matrix then The 

exponent in |A| would be the order of B and the exponent in |B| would be the order of A. As such the Kronecker sum 

and exponentiation in the  endemic transmission, risk model could be parsimoniously be regressed but only  if A is n × 

n, B is m × m and Ik denotes the k × k identity matrix. By so doing then we defines the Kronecker sum ⊕, by  

in the model forecasts targeting the significant endemic trasnmission-oriented seasonal-

sampled, hyperproductive, vector arthropod, aquatic, larval habitat,  explanatory covariate 

Further the spectrum in the endemic transmission-oriented, An. arabiensis seasonal geosampled, endmember,   

model can be quanatized For example, suppose that A and B are square matrices of size n and m respectively. If  λ1, ..., 

λn are the eigenvalues of A and μ1, ..., μm are those of B listed according to multiplicity in the grid-stratified, sub-meter 

resolution, aquatic, larval habitat, covariate coefficient  model then the eigenvalues of A ⊗ B would be 

 It thus follows that the trace and determinant of a optimizable 

Kronecker product may be optimally given by  As 

such singular values derived from a seasonal, endemic, transmission, oriented grid-stratified, sub-meter resolution, 

malaria, mosquito, aquatic, larval habitat, risk model can be generated.  If A and B are rectangular matrices, singular 

values may also be determined. Suppose that A has rA nonzero singular values, namely  

Then denoting the nonzero singular values of B by   would optimally determine any 

uncertainty capture point, endmember coefficients. Then the Kronecker product A ⊗ B will have rArB nonzero singular 

values, namely  since the rank of a matrix equals the number 

of nonzero singular values in a seasonal, predictive, vector, arthropod-related, risk model we would then derive 

 

  As such,  in terms of the relation to the abstract tensor product: in  an ento-ecoepidemiological, eco-

georeferenceable,  An. arabiensis  dataset of seasonal, predictive, vector, arthropod-related, explanatory, endemic, 

transmission oriented, endmember dataset, the Kronecker product of matrices would correspond to the abstract tensor 

product of  the risk maps delineating the endemic transmission zones. Specifically, if the vector spaces V, W, X, and Y 

have bases {v1, ..., vm}, {w1, ..., wn}, {x1, ..., xd}, and {y1, ..., ye}, respectively, and if the matrices A and B represent the 

linear transformations S : V → X and T : W → Y, respectively in the appropriate bases, then the matrix A ⊗ B would 

represent the tensor product of  any two . endemic transmission, larval habitat coavraite  maps. Subsequently S ⊗ T : V 

⊗ W → X ⊗ Y with respect to the basis {v1 ⊗ w1, v1 ⊗ w2, ..., v2 ⊗ w1, ..., vm ⊗ wn} of V ⊗ W and the similarly 

defined basis of X ⊗ Y with the property that A ⊗ B(vi ⊗ wj) would equal (Avi)⊗(Bwj), where i and j are integers in 

the proper range.  When V and W are Lie algebras, and S: V → V and T: W → W are Lie algebra homomorphisms, the 

Kronecker sum of A and B represents the induced Lie algebra homomorphisms V ⊗ W → V ⊗ W[4].  Thereafter, based 

on the  relations to products of  the endemic, transmission-oriented, malaria mosquito, seasonal, endmember graphs, the 

Kronecker product of the adjacency matrices of  ant two graphs outputs  would be  the adjacency matrix of the tensor 

product graph. The Kronecker sum of the adjacency matrices of two graphs would then be based on the adjacency 

matrix of the Cartesian product graph.  The Kronecker product can be used to get a convenient representation for some 

matrix equations[2] 

 Consider for instance the equation AXB = C, where A, B and C are given matrices and the matrix X is the 

unknown. We can rewrite this equation as Here, vec(X) denotes the 
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vectorization of the matrix X formed by stacking the columns of X into a single column vector. It now follows from the 

properties of the Kronecker product that the equation AXB = C has a unique solution if and only if A and B are 

nonsingular (see Horn & Johnson (1991, Lemma 4.3.1). 

Ito's Lemma is also referred to currently as the Itō–Doeblin Theorem in recognition of the recently discovered 

work of Wolfgang Doeblin.[1] In its simplest form, Itō's lemma states the following: for an Itō drift-diffusion 

process  and any twice differentiable function ƒ(t, x) for quantitating, any two real geo-

spatiotemporal, geosampled, time series, malaria, mosquito, eco-georferenced, An. arabiensis, grid-stratified, sub-meter 

resolution, aquatic, larval habitat, covariate coefficient, eco-endmember, LULC predictor variables t and x, where one 

has This immediately implies that ƒ(t, X) is itself an Itō drift-diffusion 

process. 

Ito's lemma explicatively states where 

is a vector of Itō processes, is the partial differential w.r.t. t, is the gradient 

of ƒ w.r.t. X, and is the Hessian matrix of ƒ w.r.t. X. More generally, the above formula also holds for any 

continuous d-dimensional semimartingale X = (X
1
,X

2
,…,X

d
), and twice continuously differentiable and real valued 

function f on R
d
. Some people prefer to present the formula in another form with cross variation shown explicitly as 

follows, f(X) is a semimartingale satisfying In this 

expression, the term fi represented the partial derivative of f(x) with respect to x
i
, and [X

i
,X

j
 ] is the quadratic covariation 

process of X
i
 and X

j
. 

In , an open subset of , and , the Sobolev space is defined by 

where , , and the derivatives 

are taken in a weak sense. When endowed with the norm is a 

Banach space. In the special case , would be  denoted by  in an endemic, ento-ecoepidemiological, 

vector arthropod, malaria, mosquito, aquatic, larval habitat, prognosticative, endmember model. This space is a Hilbert 

space for the inner product  

 We modeled given a function f(x) at a hypeprproductive, An. arabiensis capture point a in the domain a of f. 

The best linear approximation to f(x) near a was given by the linear function La(x) = f(a) + f '(a)(x-a) The graph of the 

linear function La(x) passed through the  capture point [e.g., a,f(a)) and has slope f '(a)]. The the endmember functions f 

and La had the same value at a and they have the same derivative at a. La(a) = f(a) L'a(a) = f '(a) Of course, the second 

and higher derivatives of linear functions were all zero, but a quadratic function had two nonzero derivatives. We were 

able to prove that  quadratic function Qa(x) derived from an oviposition, endmember, forecast, vulnerability model has  

the properties that the functions f and Q a have the same value, first derivative, and  second dervative at a. Qa(a) = f(a) 

Q'a(a) = f '(a) Q''a(a) = f ''(a)  

We vonsidered the cosine function f(x)=cos(x) and let a=0 in the malaria mosquito model It was not  hard to 

verify that if we let Q(x) = 1 - x
2
/2, then f and Q had the same first two derivatives at 0. In addition, the graph of Q in 

Table 15  resembles the graph of f very near 0.  
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Table 15 The best linear approximation in a sub-mter resolution, grid-stratfiable, endmember, grid-stratfiiable 

malaria, mosquito,  ovipsoition model to the cosine function near 0 for f(x)=cos(x), as given by L0(x)=1.  

 

f(x) = cos(x) 

Q(x) = 1 - x
2
/2  

f(0) = cos(0) = 1 

Q(0) = 1 - 0
2
 = 1 

f '(x) = -sin(x) 

Q'(x) = -x 

f '(0) = -sin(0) = 0 

Q'(0) = -0 = 0 

f ''(x) = -cos(x) 

Q''(x) = -1 

f ''(0) = -cos(0) = -1 

Q'-(0) = -1 
 

 

We also found  a quadratic polynomial function Q(x) that had  the same two first derivative capture point, 

seasonal, hyperproductive, aquatic, larval habitat, density count values as the natural logarithm g(x)=ln(x) at x=1.  We 

were able to confirm that the following quadratic function could regressively quantitate to any given f and a in the 

model. That is, with the quadratic Qa listed below, the functions Qa and f agree at a seasonal, eco-georferenecable, 

capture point,  hyperproductive foci  as do the derivatives Q'a and f  ', as do the second derivatives Q''a and f ' in ' Qa(x) 

= f(a) + f '(a)(x-a) + f ''(a)(x-a)
2
/2.This model represented the best quadratic approximation to f(x) in the model. 

We may define functions on discontinuous stochastic processes in an oviposition, eco-georeferenceable, 

aquatic ,larval habitat, geo-spectrotemporal, capture point, malaria  model. For example, if  a vector ecologist Let h be 

the jump intensity, the Poisson process model for jumps will be the probability of one jump in the interval [t,t + Δt] 

which would then be  hΔt plus higher order terms. h could be a constant, a deterministic function of time, or a stochastic 

process. The survival probability ps(t) is the probability that no jump has occurred in the interval [0,t]. The change in 

the survival probability is  so  If we let S(t) be a discontinuous 

stochastic process hen we can write S(t 
−
 ) for the value of S as we approach t from the left. Write djS(t) for the non-

infinitesimal change in S(t) as a result of a jump. Then If we let z be the magnitude of the 

jump and let η(S(t 
−
 ),z) be the distribution of z. The expected magnitude of the jump in the oviposition, eco-

georeferenceable, aquatic , larval habitat, geo-spectrotemporal, capture point, malaria  model then will be 

. A researcher can then define dJS (t), a compensated process and martingale, 

as the equation .Hence 

 
A medical entomologist or malariologist may also consider a function g(S (t), t) of jump process dS(t). If S(t) 

jumps by Δs then g(t) jumps by Δg. The Δg is drawn from distribution ηg() which may depend on g(t 
−
 ), dg and S(t 

−
 ). 

The jump part of g is  If S contains drift, in an eco-georeferenecable, 

spectrotemporal, eco-geographic, LULC, eco-endmember, malaria, mosquito, aquatic, larval habitat, forecast, 

vulnerability  model diffusion and jump parts, then Itō's Lemma for   g(S(t),t) then  

 Itō's lemma for a process which is 

the sum of a drift-diffusion process and a jump process is just the sum of the Itō's lemma for the individual parts. 

 

Itō's lemma can also be applied to general d-dimensional semimartingales in an oviposition, eco-

georeferenceable, aquatic, larval habitat, geo-spectrotemporal, geosampled, eco-georferenced, capture point, malaria, 

forecast, vulnerability models which need not be continuous. In general, a semimartingale is a càdlàg process, and an 

additional term needs to be added to the formula to ensure that the jumps of the process are correctly given by Itō's 

lemma. For any cadlag process Yt, the left limit in t is denoted by Yt-, which is a left-continuous process. The jumps are 

written as ΔYt = Yt - Yt-. Then, Itō's lemma states that if X = (X
1
,X

2
,…,X

d
) is a d-dimensional semimartingale and f is a 
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twice continuously differentiable, real-valued function on R
d
 then f(X) is a semimartingale, and therefore a malariologist 

or medical entomologist  could then optimally generate: 

. This differs from 

the formula for continuous semimartingales by the additional term summing over the jumps of X, which ensures that the 

jump of the right hand side at time t is Δf(Xt). 

 

A formal proof of the lemma requires us to take the limit of a sequence of random variables  (e.g., ovispoition, 

eco-georferenecable, sub-meter resolution, grid-stratfiable, eco-georeferenceable, capture point, wavelength LULC 

frequnecies) which is not done here. Instead, we give a sketch of how one can derive Itō's lemma by expanding a Taylor 

series and applying the rules of stochastic calculus. For example, if we assume the Itō process is in the form of an 

expanding f(x, t) in a ovispoition, forecast, vulnerability, endmember, Taylor series in x and for t we 

have Substituting a dt + b dB for dx into the eco-georeferenceable, aquatic, larval 

habitat, geo-spectrotemporal, ento-ecoepidemiological, forecast, vulnerability, endmember,  capture point, malaria  

model can be conducted by In the limit as dt 

tends to 0, the dt
2
 and dt dB terms disappear, but the dB

2
 term tends to dt. The latter can be shown if we prove 

that since existes in the model outputs Deleting the dt
2
 and dt dB terms, substituting dt 

for dB
2
, and collecting the dt and dB terms, we may obtain as required for proper 

regression quantitation. 

 

Finally, a process S is said to follow a geometric Brownian motion with volatility σ and drift μ if it satisfies the 

stochastic differential equation dS = S(σdB + μdt), for a Brownian motion B[2]. Applying Itō's lemma with f(S) = log(S) 

in a malaria. mosquito, aquatic, larval habitat, ento-ecoepidemiological, grid-stratifiable, ovisposition,  forecast, 

vulnerability, endmember,prognosticative model can render  It 

follows that log(St) = log(S0) + σBt + (μ − σ
2
/2)t, and exponentiating renders the expression for S, 

The Doléans exponential or stochastic exponential of a continuous 

semimartingale X may  be optimally defined as the solution to the SDE dY = Y dX with initial condition Y0 = 1which 

may be  denoted by Ɛ(X) in a malaria, capture point model for geo-spatiotemporally targeting eco-georeferenceable,  

seasonal, hyperproductive, aquatic, larval habitats based on larval density. 

Applying Itō's lemma with f(Y) = log(Y) would render  in any 

forecast, vulnerability, geo-spectrotemporal, ento-ecoepidemiological, model. Exponentiating renders the 

solution [4]. Itō's lemma can be employed to derive the Black–Scholes formula for an 

option. Suppose a normalized, malaria, mosquito, aquatic, larval habitat, ento-ecoepidemiological, forecast, 

vulnerability model follows a Geometric Brownian motion given by the stochastic differential equation dS = S 

(σdB + μ DT). Then, if the value of an option at time t is f(t,St), Itō's lemma would render 

The term (∂f/∂S) dS would represent the change in value in time dt of the trading strategy 

which may allow  holding an amount ∂f/∂S  ( i.e., forecasted prolific, eco-georferenceable, capture point) If this strategy 

is followed, and any prevalance statistic is assumed to grow at the risk free rate r, then the total value V of this model 

would satisfy  the SDE  This strategy replicates the option if V = f(t,S). Combining these 

equations would render a malaria mosquito, oviposition, endmember, sub-meter resolution, grid-stratfiable, Black-

Scholes equation which may be robustly  expressed as : 

. 
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 In Bayesian statistics, the posterior predictive distribution is the distribution that a new idependently 

distributed capture point would have, given a set of N existing empirical, ento-ecoepidemiological, variables ( e.g., 

geo-spectrotemporal, geosampled, grid-stratifiable, sub-meter resolution, An. arabiensis aquatic, larval habitat, 

oviposition endmember, observations ). In a frequentist context, this might be derived by computing 

the maximum likelihood estimate (or some other estimate) of the parameter(s) given the observed data, and then 

plugging them into the distribution function of the new capture point observations.However, the concept of posterior 

predictive distribution is normally used in a Bayesian context, where it makes use of the entire posterior distribution of 

the parameter(s) given the observed data — rather than  simply a capture point estimate. Specifically, it is computed by 

marginalizing over the parameters, using the posterior distribution: where 

represents the parameter(s) and the hyperparameter(s). Any of may be vectors (or equivalently, may stand 

for multiple capture point, grid-stratifiable, oviposition, malaria, mosquito, aquatic, larval habitat, seasonal, eco-

georeferenceable,  hyperproductive, foci parameters).Note that this is equivalent to the expected value of the 

distribution of the new capture point, when the expectation is taken over the posterior distribution, (i.e.: 

). 

.  The predictive probability of seeing a particular endemic, value of a new geo-spectrotemporal, geosampled, 

aquatic, larval habitat,capture point, eco-georeferenceable, observation will vary depending on the endmember 

parameters of the distribution of the observation. In this case, a malariologist or medical entomologist knows the exact 

value of the, capture point, aquatic, larval habitat, geosampled, eco-georeferenceable parameters A posterior 

distribution may specify what the parameters should be given the ento-ecological, time series data. Logically, then, to 

get "the" predictive probability, a researcher  should average all of the various predictive probabilities over the different 

possible, grid-stratifiable, sub-meter resolution, eco-georeferened endmember, parameter estimaor  values, weighting 

them according to how strongly he or she believes in them. This is exactly what this expected value does. 

 Compare this to the approach in frequentist statistics, where a single estimate of the parameters, (e.g. a 

maximum likelihood estimate, would be computed, and this value plugged in). This is equivalent to averaging over a 

posterior distribution with no variance, (i.e. where we are completely certain of the parameter having a single value ( 

e.g, seasonal hypeprproductive, sub-meter resolution, grid-stratified,capture point, larval density count). The result 

would be  weighted too strongly towards the mode of the posterior, and would  not account of other possible values, 

unlike in the Bayesian approach. 

The prior predictive distribution, in a Bayesian context, is the distribution of a data point ( e.g., eco-

georeferenced seasonal, capture point, aquatic, larval habitat) marginalized over its prior distribution. That is, if 

 and , then the prior predictive distribution would be  the corresponding distribution 

, where  Note that this is similar to the posterior predictive distribution except 

that the marginalization is quantitatble with respect to the prior distribution instead of the posterior distribution. Further, 

in this research, the prior distribution  was a conjugate prior and as such then the posterior predictive 

distribution belonged to the same family of distributions as the prior predictive distribution. If the prior distribution 

is conjugate, then( ( i.e. the posterior distribution also belongs to but simply with a 

different parameter instead of the original parameter ).Then, 

Henceforth, the  posterior 

predictive distribution in an oviposition, sub-meter resolution, malaria, mosquito, ento-ecoepidemiological, forecast, 

vulnerability, grid-stratifiable model would follow the same distribution H as the prior predictive distribution, but with 

the posterior values of the hyperparameters substituted for the prior for targeting seasonal, unknown, hyperproductive, 

capture point, aquatic, larval habitat, foci.  
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The prior predictive distribution is in the form of a compound distribution, and in fact is often used to define a 

compound distribution, because of the lack of any complicating factors such as the dependence on the malaria 

empricial, oviposition, sub-meter resolution, grid-stratifiable,  eco-georeferenceable,  ento-eco-epidemiological, LULC 

data Xand the issue of conjugacy. For example, the Student's t-distribution can be defined as the prior predictive 

distribution of a normal distribution with known mean μ but unknown variance σx
2
, with a conjugate prior, scaled, 

inverse, chi-squared distribution placed on σx
2
, with hyperparameters ν and σ

2
. The resulting compound distribution 

is indeed a non-standardized Student's t-distribution, and follows one of the two most common 

parameterizations of this distribution. Then, the corresponding posterior predictive distribution would again be Student's 

t, with the updated hyperparameters that appear in the posterior distribution also directly appearing in the 

posterior predictive distribution. Note in some cases that the appropriate compound distribution is defined using a 

different parameterization than the one that would be most natural for the predictive distributions in the current problem 

at hand. Often this results because the prior distribution used to define the compound distribution is different from the 

one used in the current problem. For example, as indicated above, the Student's t-distribution of the malaria, ento-

ecoepidemiological, endmember empricial, oviposition, sub-meter resolution, grid-stratifiable, frequentistic, eco-

georeferenceable datatset  was defined in terms of a scaled-inverse-chi-squared distribution placed on the variance. 

However, it is more common to use an inverse gamma distribution as the conjugate prior in this situation. The two are 

in fact equivalent except for parameterization; hence, the Student's t-distribution can still be used for either predictive 

distribution, but the hyperparameters must be reparameterized before being plugged into an ento-ecoepidemiological, 

geo-spectrotemporal, endmember, endemic, forecast, vulnerability model. Most, but not all, common families of 

distributions belong to the exponential family of distributions. Exponential families have a large number of useful 

properties. One of which is that all members have conjugate prior distributions — whereas very few other distributions 

have conjugate priors. 

Another useful property is that the pdf of the compound distribution corresponding to the prior predictive 

distribution of an exponential family distribution may be marginalized over its conjugate prior distribution which can be 

determined analytically. Assume that is a member of the exponential family with empricial, oviposition, sub-

meter resolution, grid-stratified,  eco-georeferenced, malaria, mosquito, forecast, vulnerability model parameter θthat is 

parametrized according to the natural parameter , and is distributed as while 

is the appropriate conjugate prior, distributed as Then the prior predictive 

distribution H (i.e., the result of compounding F with G  in a time series, multivariate, predictive, residual, geo-

spectrotemporal, geosampled, eco-georeferenceable,  ento-epidemiological, An. arabiensis aquatic, larval habitat, 

forecast, vulnerability, signature, frequency LULC model  ) may be optmally, asymptotically quantitated employing 

 The last line follows from the previous one by recognizing that the function inside the 

integral is the density function of a random variable distributed as , excluding the normalizing 

function . Hence the result of the integration will be the reciprocal of the normalizing function. 

The above result is independent of choice of parametrization of θ, as none of θ,  and appears commonly 

in ovisposition, ento-ecoepidmeiological, forecast, vulnerability, malaria, mosquito models. (Note that is a 

function of the parameter and hence will assume different forms depending on choice of parametrization). For standard 

choices of F and G, it is often easier to work directly with the usual geosampled, geo-spectrotemporal, endmember, 

oviposition, parameter estimators rather than rewrite in terms of the natural parameters. Note also that the reason the 

integral is tractable in these paradigms is that it involves computing the normalization constant of a density defined by 

the product of a prior distribution and a likelihood. When the two are conjugate, the product is a posterior distribution, 

and by assumption, the normalization constant of this distribution is known [2]. Hence in a forecast, vulnerability, ento-

ecoepidemiological, aquatic, larval habitat, malaria, mosquito, oviposition model the density function of the compound 

distribution would follow a particular form, consisting of the product of the function that forms part of the density 

function for  F, with the quotient of two forms of the normalization "constant" for  G, one derived from a prior 

distribution and the other from a posterior distribution.  
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The beta-binomial distribution is a good example of how this process would aid in geolocating unknown, ento-

ecoendmember, seasonal hypeproductive, eco-georferenecable, LULC, sub-meter resolution,, grid-stratifiable, capture 

point, seasonal foci . Despite the analytical tractability of such vulnerability, distributions, they are in themselves 

usually not members of the exponential family. For example, the three-parameter Student's t distribution, beta-binomial 

distribution and Dirichlet-multinomial distribution are all predictive distributions of exponential-family distributions 

(the normal distribution, binomial distribution and multinomial distributions, respectively), but none are members of the 

exponential family. This can be due to the presence of functional dependence on . In an exponential-family 

distribution for optimally aymptotically, remotely targeting seasonal, eco-georeferenceable, capture point, malaria, 

mosquito, aquatic,larval habitat foci, it must be possible to separate the entire density function into multiplicative 

factors of three types: (1) factors containing only variables, (2) factors containing only parameters, and (3) factors 

whose logarithm factorizes between the uncoalesced, iterably, interpolative, aquatic, larval habitat, emissivity, sub-

meter reoslution, grid-strarfiiable, ento-ecological, frequency parameters. The presence of makes this 

impossible unless the "normalizing" function   either  ignores the corresponding argument entirely or uses it only 

in the exponent of an expression. 

 Here, posterior predictive distribution in exponential families occurred whence a conjugate prior was 

employed  as the posterior predictive distribution which belonged to the same family as the prior, malaria, mosquiot, 

habitat distribution.  In the eco-georeferenceable, ento-geoclassified, forecast, vulnerability model the explanatorial, 

diagnostic, residual forecast was determined simply by plugging the updated hyperparameters for the posterior 

distribution of the unmixed, signature, LULC endmember parameter(s) into the formula for the prior predictive 

distribution. Using the general form of the posterior update equations for exponential-family distributions, a 

malariologist, medical entomologist or other experimenter  may  write out an explicit prognosticative, formula for the 

posterior, ,distribution: where [4.1]In so doing, the 

vulnerability forecasts may reveal  that the posterior predictive distribution of a series of ungeosamped, signature, ento-

ecoendmember, eco-geoclassifiable, LULC, geo-specified, capture point observations, where the observations follow an 

exponential family with the appropriate conjugate endmember prior has the same probability density as the compound 

distribution, with the capture point, parameters as specified in equation 4.1. Note in particular that the ungeosampled, 

eco-georeferenecable, foci observations themselves may enter only in the form This may be  termed the 

sufficient statistic of the ento-ecoepidemioloigical, explanatorial, capture point, hyperprodcutive observations, because 

it would reveal everything about the observations in order to compute a robust posterior or posterior predictive 

distribution based on them (or, for that matter, any LULC signature, covariate based on the likelihood of the iteratable, 

interpolative, immature habitat, signature, wavelength eco-georeferenecable observations, such as the marginal 

likelihood). 

In terms of a joint, predictive distribution, marginal likelihood It is also possible to consider the result of 

compounding a joint distribution over a fixed number of identically distributed independent endmeber, malaria, 

mosquito, sub-mter resolution, grid-stratfied, capture point samples with a prior distribution over a shared habitat 

parameter. In a Bayesian setting, this comes up in various contexts: computing the prior or posterior predictive 

distribution of multiple new observations, and computing the marginal likelihood of observed data (the denominator in 

Bayes' law), for example. When the distribution of the samples is from the exponential family and the prior distribution 

is conjugate, the resulting compound distribution may be tractable and follow a similar form to the expression rendered 

from equation 4.1. It is easy to show, in fact, that the joint compound, aquatic, larval habitat distribution of a kriged 

siagnture, ento-ecoendmember, frequency dataset  for n observations 

is . This result and the above result for a single compound distribution extend 

trivially to the case of a distribution over a vector-valued habitat observation, such as a multivariate Gaussian 

distribution. Note that Bayes' rule can also be written as follows: where the factor 

represents the impact of  E on the probability of  H. 
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 Further since  Bayesian statistics, the Wishart distribution is the conjugate prior of the inverse covariance-

matrix of a multivariate-normal random-vector, the Wishart distribution  may be characterized by its posterior density 

function  in a seasonal, predictive, vector, arthropod-related, malaria, mosquito, capture point, frequency, signature, 

endemic, transmission-oriented, risk model by letting   be a p × p symmetric matrix of the geosampeld, geo-

spectrotemporal, LULC, sub-meter resolution, grid-stratifiable, eco-geoclassifiable, signature, ento-ecoendmember  

randomized variables that is positive definite. Then by letting V be a fixed positive definite matrix of size p × p, 

explanatory endemic, transmission-oriented, wavelength, LULC covariate coefficient can be statistically ranked in the 

model’s residual forecasts. Then, if n ≥ p,  has a Wishart distribution with n degrees of freedom in the eco-

georeferenceable prognostications ( e.g., geolocations of unknown, oviposition, seasonal, hyperproductive, malaria, 

mosquito, capture points)  as it would then have a posterior denisty function  given 

by where Γp(·) is the multivariate gamma function [i.e., 

]. This definition can be extended to any real geo-sampled n > p − 1. If n ≤ 

p − 2 then the Wishart  would no longer have  a density—instead; it would represent a singular, capture point 

distribution instead. If  has a Wishart distribution with m degrees of freedom and variance matrix — in the 

endmember, predictive malaria, mosquito, vulnerability, endmember signature, LULC, frequency,model then 

—and  would be  a q × p matrix of rank q, whence . 

Further, if is a nonzero constant vector in the seasonal, predictive, An. arabienisis, oviposition, sub-

meter resolution, geo-spectrotemrpoal, frequency, signature, LULC, risk model then .In this case,  

would be  the chi-squared distribution and  in the vulnerability  residual forecasts statsitically aymptotically 

targeting the endemic, transmission-oriented, eco-georeferenecable,  capture point, eco-endmember, signature, 

iteratively, interpolative covariates. Note that  would be a constant in the model and it would be positive because  

would be  positive definite. For example, consider the case where  in a seasonal, 

predictive, vector, arthropod-related, malaria, mosquito, sub-meter resolution, eco-geoclassifiable, endemic, 

transmission-oriented, malaria, risk, endmember, LULC, signature model. That is, the jth element is one for the 

geosampled, explanatory, endemic, transmission-oriented, covariate coefficients and all others are zero. This would 

show that  and would provide the marginal distribution of each of the elements on the matrix's diagonal 

in the risk model. The Wishart distribution is the sampling distribution of the maximum-likelihood estimator of the 

covariance matrix of a multivariate normal distribution [3]. A derivation of the  this estimator   may then use the 

spectral theorem for further cofficient quantitation in the seasonal, oviposition, eco-endmember, geo-spectrotemporal, 

frequency, risk model . The Log-expectation may then w be  where ψ is 

the digamma function (i.e., the derivative of the log of the gamma function in the ento-ecoepidemiological model). This 

would play a role in variational Bayes derivations derived from robust, An. arabiensis.-related, seasonal, endemic, 

transmission-oriented, oviposition, forecast, risk models especially for Bayes networks involving the Wishart 

distribution. 

Matrix factorization (MF) has become a common approach to collaborative filtering, due to ease of 

implementation and scalability to large datasets. Two existing drawbacks of the basic model for predicting seasonal 

ecogeorefereneceable, sub-meter resolution, ovispoition, malaria, mosquito, aquatic, larval habitat is that it does not 

incorporate side information on either users or items, and assumes a common variance for all users. It may be possible 

to extend the work of constrained probabilistic matrix factorization by deriving the Gibbs updates for the side feature 

vectors for. signature, eco-entoendmember malaria, mosquito, oviposition, capture point, forecastable, endemic, 

signature items It may be that this Bayesian treatment to the constrained probabilistic malatric factor (PMF) model 

outperforms other estimation methods for efficiently, remotely, asymptotically, targeting, eco-georeferenceable, 

seasonal, hyperproductive foci A malariologist, medical entomologist or other experimenter may consider model 

extensions to heteroskedastic precision  as introduced in the literature such as in  Lakshminarayanan, Bouchard, and 

Archambeau, (2011) for determining prolific,  empricial, oviposition, sub-meter resolution, grid-stratifiable,  eco-

georeferenceable, malaria, capture points. It may be shown that overfitting in these vector eco-epidemiological forecast, 
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vulnerability models may be geospatially adjustable employing deterministic approximation algorithms (e.g: variational 

inference) whenst the observed entries in the user / item matrix are distributed in an non-uniform manner. Alternatively 

a truncated eco-endmember, malaria, mosquito, precision model may be proposed for asymptotically regressing, geo-

spectrotemporal, geosampled, eco-georeferenceable, endmember, oviposition, malaria, mosquito, grid-stratified, sub-

meter resolution, capture point, observational, uncoalesced, wavelength predictors.  The experimental results may 

suggest that these model tends to delay overfitting based on temporal geosampled malaria mosquito data. 

The use of heteroskedasticity robust covariance matrix estimators, cf. White (1980), in cross-sectional settings 

and of heteroskedasticity and autocorrelation consistent (HAC) covariance matrix estimators, cf. Andrews (1991), in 

time series contexts is extremely common in applied econometrics. The popularity of these robust,  covariance matrix, 

rco-endmember estimators is due to their consistency under weak functional form assumptions. In particular, their use 

may allow  a malariologist, medical entomologist or other experimenter to form valid confidence regions about a set of 

regressed, unmixed, sub-meter resolution, ento-geoclassifiable, grid-stratifiable, frequency, capture point, unknown, 

iteratively interpolated,  LULC   signature, parameters from a model of interest without specifying an exact process for 

the disturbances in the model. 

With the increasing availability of panel data, it is natural that the use of robust, covariance matrix, endmember 

estimators for panel data settings that allow for arbitrary within individual correlation are becoming more common. A 

recent paper by Bertrand et al. (2004) illustrated the pitfalls of ignoring serial correlation in panel data, finding through 

a simulation study that inference procedures which fail to account for within individual serial correlation may be 

severely size distorted. As a potential resolution of this problem, Bertrand et al. (2004) suggest the use of a robust 

covariance matrix estimator proposed by Arellano (1987) and explored in Kezdi (2002) which may allow arbitrary 

within individual correlation  to be optimally quantitated in a prognosticative, sub-meter resolution, grid-stratifiable, 

LULC, aquatic, larval habitat, model, for asymptotically targeting seasonal, unknown, hyperproductive, eco-

endmember, capture point foci in a simulation study that tests frequency, signture estimators of the covariance 

parameters based on size 

In this paper, we addressed this issue by exploring the theoretical properties of the CCM estimator in 

asymptotics that allow n and T to go to infinity jointly and in asymptotics where T goes to infinity with n fixed in an 

oviposition, empricial, sub-meter resolution, grid-stratifiable,  eco-georeferenceable, malaria, mosquito, 

vulnerability,LULC, eco-endmember, geo-spectrotemporal,  prognosticative model.   We found that the CCM 

estimator, appropriately normalized, is consistent without imposing any conditions on the rate of growth of T ( e.g., 

geosampled, larval, seasonal, signature, density count) relative to n even when the time series dependence between the 

aquatic larval habitat observations is left unrestricted. In this case, both the OLS estimator and the CCM estimator 

converge because the only information is coming from cross-sectional signature, variation. If the time series process is 

restricted to be strongly mixing, the OLS estimator is more consistent but, because high lags are not down weighted, 

and as such the robust covariance matrix estimator still converges[3]. This behavior suggests, as indicated in the 

simulations found in Kezdi (2002), that it is the frequency n dimension and not the size of n relative to T that matters 

for determining the properties of the CCM estimator in an oviposition, aquatic, larval habitat, ento-ecoepidemiological, 

geo-spectrotemporal, forecast, vulnerability, An. arabiensis  model. It is interesting to note that the limiting behavior of 

seasonal eco-georeferenceable immature habitat changes ‘‘discontinuously’’ as the amount of dependence is limited. In 

particular, the rate of convergence changes. However, despite the difference in the limiting behavior there is no 

difference in the behavior of standard inference procedures based on the CCM estimator in such models. In particular, 

the same t and F statistics will be valid in either case (and in the n ! 1 with T fixed case) without reference to the 

asymptotics or degree of dependence in the empirically regressed, malaria, mosquito, eco-endmember, LULC unmixed 

signature datasets. A malariologist, medical entomologist or other experimeneter may derive the behavior of the CCM 

estimator as T ! 1 with n fixed, where the unmixed, signature sub-meter resolution, grid-stratfiiable, iteratively 

interpolative, wavelength, estimator is not consistent in an oviposition, eco-georeferenceable, malaria, mosquito, 

capture point model for aymptotically targeting seasonal, hyperproductive unknown foci  but this model output  does 

not have to have  a limiting distribution. This result would correspond to asymptotic results for HAC estimators without 

truncation as found in recent work by Kiefer and Vogelsang (2002, 2005), Phillips et al. (2003), and Vogelsang (2003). 

While the limiting distribution in the model estimates would not be proportional to the true covariance matrix in 

general, it would be proportional to the covariance matrix which would aid in construction of asymptotically pivotal 

statistics(e.g., precise geolocations of eco-georeferenecable, ungeosampled, prolific, capture point, aquatic, larval 

habitats) . In fact, in this case, the standard t-statistic is not asymptotically normal in these forecast vulnerability ento-
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ecoepidemiolgical, signature models but converges in distribution to a random, frequency, sub-mter resolution, grid-

stratfiied, LULCvariable (e..g, discontinuous canopied endmember)  which may be  exactly proportional to a tn1 

distribution. This behavior suggests the use of the tn1 for constructing confidence intervals in malaria mosquito, 

remeote sensing LULC models since the CCM estimator may be employed to provide asymptotically correct critical, 

capture point values under any asymptotic sequence. 

Exploring the finite sample behavior of the CCM estimator and tests based upon it through a short simulation 

study may reveal seasonal, eco-georeferenceable, unknown, iteratively interpolated, noiseless hyperproductive, malaria, 

mosquito, aquatic, larval habitats. The simulation results may indicate that tests based on the robust standard error 

estimates generally have approximately correct size in serially correlated panel, oviposition, forecast, vulnerability, 

ento-ecoendmember,sub-mter resolution, grid-stratifiable,  LULC signature, unmixed data even in small samples. The 

standard error estimates themselves are considerably more variable than their counterparts based on simple parametric 

models [2]. The bias of the simple, parametric, sub-meter resolution, grid-stratifiable, malaria, mosquito, eco-

georeferenceable, capture point, endmember, LULC target estimators is also typically smaller in the cases where the 

parametric model is correct, which may suggestthat these standard error estimates are likely preferable when  a 

malariologiost, medical entomologist or other expwerimeneter is confident in the form of the error process. The 

simulation, may explore the behavior in these paradigms  employing  an analog of White’s (1980) direct test for 

heteroskedasticity proposed by Kezdi (2002) when constructing an oviposition, eco-georeferenceable, ento-

ecoepidemiological, capture point, sub-meter resolution, grid-stratifiable, endmember, forecast, vulnerability, frequency 

signature model for asymptotically, targeting unknown, seasonal, hyperproductive, eco-georeferenceable, aquatic, larval 

habitat, capture point, ento-ecoendmember foci.  The results may indicate the performance of the test is fairly good for 

moderate geo-spectrotemporally geosampled, n, though it is quite poor when n is small. This simulation behavior may 

also suggeststhat this test may be useful for choosing between the use of robust standard error estimates and standard 

errors estimated from a more parsimonious LULC, vector arthropod, endmebe, forecast-oriented, wavelength model 

when n is reasonably large for targeting seasonal, hyperproductive foci. 

We began the ento-ecoepidemiological, geo-spectrotemporal, signature, endmember, nonlinear analysis of the 

An. arabiensis, oviposition, capture point, aquatic, larval habitat, endmember  operators with definitions of 

differentiation. We let F(x) be a nonlinear operator acting from D(F) ⊂ X to R(F) ⊂ Y , where X and Y were real 

Banach spaces. We assumed D(F) was open. We noted that F(x) was differentiable in the Fr´echet sense at x0 ∈ D(F)in 

the model  if there was a bounded, linearizable, capture point, eco-endmember, LULC operator, denoted by F (x0), 

such that F(x0 + h) − F(x0) = F  (x0)h + ω(x0, h) for all h < ε with some ε > 0, where ω(x0, h) / h → 0 as h → 0. Then 

F  (x0) was c the Fr´echet derivative of F(x) at x0, and dF(x0, h) = F  (x0)h. Elements of nonlinear functional 

analysis can occur if F(x) is Fr´echet differentiable in an open domain S ⊂ D(F) of if it is Fr´echet differentiable at 

every point of S[4]. It was clear that the Fr´echet derivative of a continuous linear operator is the same operator in a 

forecast, vulnerability-oriented, sub-meter resolution, grid-stratifiable An. arabiensis, oviposition, signature, eco-

geoclassifiable, LULC, frequency  model. We also assumed y = f(x) was a vector function from Rm to Rn and f(x) ∈ 

(C(1)(Ω))n. We showed  that this function was  Fr´echet derivative at x0 ∈ Ω  in an eco-georeferenceable, vector 

arthropod, probabistic endmember, uncoalesced, ento-ecoendmeber signature, paradigm if a Jacobi matrix , ∂fi(x0) ∂xj - 

i=1,...,n j=1,...,m is employable for quantitating  the geosampled,  geo-spectrotemporal,unmixed,  aquatic, larval habitat, 

seasonal, iteratively interpolative, LULC covariates. In the construction of the Fr´echet derivative, we recognized a 

method of the calculus of variations, which we employed to obtain the Euler equations of a functional. The following 

derivative by Gˆateaux wasalso obtained. We assumed that for all h ∈ D(F) we had a limt→0 F(x0 + th) − F(x0) t = 

DF(x0, h), x0 ∈ D(F), where DF(x0, h) was a linear operator with respect to h in the model. In so soing, DF(x0, h) was 

then the  Gˆateaux differential of F(x) at x0 in the ento-ecoepidmeiological, model residual derivative, signature, LULC  

dataset.Denoting DF(x0, h) = F  (x0)h, we generated the Gˆateaux derivative F  (x0). An operator is differentiable in 

the Gˆateaux sense in an open domain S ⊂ X if it has a Gˆateaux derivative at every point of S[4]. The definitions of the 

capture point, unknown, habitat, wavelength derivatives were clearly valid for the ento-ecoendmember, geo-

spectrotemporal, sub-meter resolution, grid-stratified, eco-geoclassified, LULC functionals for asymptotically, 

optimally, remotely targeting ecogeoreferenceable, seasonal, hyperproductive, capture points.  

Suppose Φ(x) is a functional which is Gˆateaux differentiable in a Hilbert space and that DΦ(x, h) is bounded 

at x = x0 as a linear functional in h in an endmember, oviposition,sub-meter resolution, grid-stratifiable, eco-

endmember, malaria mosquito, prognosticative, eco-geoclassfied, LULC, risk model for asymptotically targeting 
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seasonal, unknown, hyperproductive capture points. Then, by the Riesz representation theorem, the signature aquatic, 

larval habitat endmebers can be represented in the form of an inner product; denoting the representing element by grad 

Φ(x0). In so doing   a malariologist or medical entomologist may achieve DΦ(x0, h) = (grad Φ(x0), h). By this, an 

experimenter would have an operator grad Φ(x0) [i.e., the gradient of Φ(x) at x0] which could quanatiate any 

propogational, endmember interpolative uncertianities in the oviposition, ento-ecoepidemiological, signbature LULC  

model output dataset. If an operator F(x) in an oviposition, sub-meter resolution, grid-stratifiable,  endmember, risk 

model  from X to Y is Fr´echet differentiable at x0 ∈ D(F), then F(x) is Gˆateaux differentiable at x0 and the Gˆateaux 

derivative coincides with the Fr´echet derivative.  

A function f is said to be Gˆateaux differentiable at x if there exists a bounded linearizable operator Tx ∈ B(X, 

Y ) such that ∀ v ∈ X, lim t→0 f(x + tv) − f(x) t = Txv[4]. The operator Tx is called the Gˆateaux derivative of f at x[4]. 

If for some fixed v the limits δvf(x) := d dt    t=0 f(x + tv) = limt→0 f(x + tv) − f(x) t exists, in a sub-meter resolution, 

grid-stratifiable, forecast, vulnerability, malaria, mosquito, signature,LULC, ento-geoclassifiable model,  f will have a 

directional derivative at x in the direction v. Hence f is Gˆateaux differentiable at x in such an ento-ecoepidemiological, 

oviposition, aquatic, larval habitat, endmember, LULC, risk model for asymptotically targeting eco-georferenecable, 

ungeosampled, foci  if and only if all the directional derivatives δvf(x) exist and form a bounded linear operator Df(x) : 

v  → δvf(x). If the limit (in the sense of the Gˆateaux derivative) exists uniformly in v on the unit sphere of X in the 

model, f would be  Fr´echet differentiable at x and Tx would be  the Fr´echet derivative of f at x. Equivalently, if a 

malaiologist medical entomologist or other experimenter employs  y = tv then t → 0 if and only if y → 0 occurs in the 

ento-ecoepidemiological model output. Thus, f is Fr´echet differentiable at x  in a robust  oviposition, sub-meter 

resolution, grid-startifiable, malaria, mosquito, capture point, eco-georeferenecable, geo-spectrotemporal, geosampled, 

forecast, vulnerability, eco-endmember, signature, LULC model and if for all y, f(x + y) − f(x) − Tx(y) = o( y )  then 

Tx = Df(x) will be the derivative of f at x. Note that the distinction between the two notion of differentiability is made 

by how the limit is taken. The importance being that the limit in the Fr´echet case only depends on the norm of y in 

ento-epidemiological,eco-endmember prognosticative, ento-geoclassifiable, LULC signature, sub-meter resolution, 

capture point, frequency models especially when asymptotically  targeting ecogeorferenceable, seasonal, 

hyperproductive, capture point, aquatic, larvakl habitat foci 

     A function which is Fr´echet differentiable at an ovipsoition, eco-geo-classifiable,  malaria ,mosquito, 

hyperproductive, seasonal, eco-georeferenceable, sub-meter resolution, grid-stratifiable,LULC capture point , 

probabilistic paradigm for aymptotiically targeting prolific foci based on larval density counts may be continuous but 

this is not the case for Gˆateaux differentiable functions (even in the finite dimensional case). For example, the function 

f : R2 → R  may be definable by f(0, 0) = 0 and f(x, y) which may represent  x4y/(x6 + y3) for x2 + y2 > 0, as its 

Gˆateaux derivative at the origin, in a frequency, sub-mter resolution paradigm for optimally targeting seasonal, 

hyperproductive, eco-georeferenceable foci but fails to be continuous thereafter. This could provide an example of a 

function in these models which is Gˆateaux differentiable but not Fr´echet differentiable. Another example is the 

following: If X is a Banach space, and ϕ ∈ X is a discontinuous linear, explanatorial functional in an oviposition, sub-

meter resolution, grid-stratifiable, eco-endmember, signature, eco-geoclassifiable, geo-spectrotemporal, LULC, malaria 

mosquito, ento-ecoepidemiological,  risk model then the function f(x) =  x ϕ(x) may be  Gˆateaux differentiable at x 

= 0 with derivative 0. However in so doing,  f(x) would  not have to be  Fr´echet differentiable in the output since ϕ 

does not have limit zero at x = 0. 

Every countable collection of Lipschitz functions on a Banach space X with separable dual had a common 

point of Fréchet differentiability in our eco-georeferenecable, sub-meter resolution, grid-stratified, vulnerability, 

malaria, mosquito, capture point, geo-spectrotemporal, oviposition LULC endmember prognosticative, signature, 

frequency model. We show that the answer is positive for some infinite-dimensional X whence asymptotically targeting 

seasonal, unknown capture point, aquatic, larval habitat, malaria mosquito,  hyperproductive foci  based on an 

iteratable, interpolative, sub-meter resolution, eco-geoclassfiable,  LULC eco-endmember signature Previously, even 

for empirical, aquatic, larval habitat sub-pixel LULC collections consisting of two functions this has been known for 

finite-dimensional X only (although for one function the answer is known to be affirmative in full generality). Our aims 

in this research were achieved by introducing a new class of null sets in Banach spaces (called Γ-null sets) which was 

introduced into the malaria model whose definition involved both the notions of category and measure which revealed 

that the required differentiability holds almost everywhere when targeting seasonal, hyperproductive, capture point, 
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ento-ecoepidemiological, eco-georeferenecable, endmember, capture point foci. We even obtained existence of Fréchet 

derivatives of Lipschitz functions between certain infinite-dimensional quasi-Banach spaces; no such results have been 

known previously in the literature. Our main result states that a Lipschitz map between separable Banach spaces is in a 

sub-meter resolution, oviposition, eco-georeferenceable, malaria, mosquito, forecast, vulnerability, grid-stratifiable, 

endmember,LULC model  is Fréchet differentiable Γ-almost everywhere provided that it is regularly Gâteaux 

differentiable Γ-almost everywhere and the Gâteaux derivatives stay within a norm separable space of operators. It is 

easy to see that Lipschitz maps of X to spaces with the Radon-Nikod´ym property are Gâteaux differentiable Γ-almost 

everywhere as well in these signature prognosticative, frequency, grid-stratifiable paradigms. Moreover, Gâteaux 

differentiability implies regular Gâteaux differentiability with exception of another kind of negligible sets, so-called σ-

porous sets. Hence every space in an oviposition, eco-georeferenecable, geo-spectrotemporal, ento-ecoendmeber, sub-

meter resolution, LULC, malaria mosquito, endmember, ovipsoition,  forecast, vulnerability model σ-porous set is Γ-

null. Further this holds for C(K) with K countable compact, the Tsirelson space and for all subspaces Weierstrass' 

infinite product theorem [see 3]. Hence  any given ovispsoition, geo-spectrotemrpoal, sub-meter reosolution, grid-

stratifiable, eeco-geoclassifiable, malaria, mosquito, iterative \, interpolative, exploratory, ento-ecoendmember,  

signature, frequency, LULC  sequence in the complex 

plane ,  

there  exists an entire function with zeros at the capture points  of this sequence and only at these points. This 

function may be constructed as a canonical product: where  is the multiplicity of zero 

in the sequence and  may reveal unknonw geolocations of eco-georeferenceable, 

seasonally, prolific foci. An entire function with a given sequence of complex numbers {αk}as its zeros. Suppose that 

the zeros αk≠0are arranged in monotone increasing order of their moduli, |αk|≤|αk+1| and have no limit point in the 

finite plane (a necessary condition), i.e. limk→∞αk=∞limk→∞αk=∞. Then the canonical product mayillustrate the 

form∏ 

(zαk,qk)=∏k=1∞W(zαk,qk)=∏k=1∞(1−zαk)ePk(z),∏(zαk,qk)=∏k=1∞W(zαk,qk)=∏k=1∞(1−zαk)ePk(z),where 

Pk(z)=zαk+12(zαk)2+…+1qk(zαk)qk.Pk(z)=zαk+12(zαk)2+…+1qk(zαk)qk in a, sub-meter resolution, krigable, grid-

stratified,, signature, wavelength, unmixed model for asymptotically targeting seasonal, hyperproductive, eco-

georferenceable, ungeosampled foci of malaria mosquito, aquatic, larval habitats . The W(z/αk,qk)W(z/αk,qk) are 

called the elementary factors of Weierstrass[4]. The exponents qk could then be subsequently chosen so that the 

canonical product is absolutely and uniformly convergent on any compact set; for example, it suffices to take qk≥k−1. I 

these probabilistic, LULC signature, frequency   paradigms . If the sequence αk|} has a discrete, explanatory, robust, 

finite exponent of convergence β=inf{λ>0:∑k=1∞|αk|−λ<∞},β=inf{λ>0:∑k=1∞|αk|−λ<∞}, then all the qk can be 

chosen to be the same, starting, from the minimal requirement that qk=q≤β≤q+1; this q is called the genus of the 

canonical product. If β=∞, (i.e. if ∑∞k=1|αk|−λ∑ diverges for any λ>0, then one has a canonical product of infinite 

genus. The order of a canonical product ρ=β (for the definition of the type of a canonical product in a sub-meter 

resolution, grid-stratifiable, geo-spectrotemporal, LULC, prognosticative, signature, LULC model  may optimally 

asymptotically target, seasonal, eco-georeferenceable, aquatic, larval habitat, eco-endmember foci. 

The multipliers are called Weierstrass prime multipliers or elementary 

factors. The exponents  may be  chosen in a sub-meter resolution, empirical dataset of eco-georeferenecable, 

malaria, mosquito model so as to ensure the convergence of the an endmember product; for example, the 

choice  may ensure the convergence of any sequence of  an unknown, aquatic, larval habitat, capture point. It 

also follows from this theorem that any entire function  in a forecast vulnerability ento-ecoepidemiological, LULC, 

sub-pixel model with zeros would have the form where  is the canonical  product and  is an 

entire function (see also Hadamard theorem on entire functions). If the indices n1,n2,…, of all non-zero, ento-

ecoendmember, eco-geoclassified LULC, geospecified, capture point, geosampled coefficients of the power series then 

f(z)=∑n=0∞anznf(z)=∑n=0∞anzn may satisfy the condition nk+1>(1+θ)nk, where θ>0. In so doing, then the boundary 

of the disc of convergence of this series would be  its natural boundary, (i.e. the function has no analytic 

continuation across the boundary of this disc). This condiction is known as Hadamard's condition; the gaps which 

satisfy the Hadamard condition are called Hadamard gaps [2].  

 

https://www.encyclopediaofmath.org/index.php/Weierstrass_theorem#References
https://www.encyclopediaofmath.org/index.php/Canonical_product
https://www.encyclopediaofmath.org/index.php/Hadamard_theorem
https://www.encyclopediaofmath.org/index.php/Analytic_continuation
https://www.encyclopediaofmath.org/index.php/Analytic_continuation
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Weierstrass' infinite product theorem can be generalized to the case of an arbitrary domain : regardless 

of a sequence of ento-ecoendmember, iteratable, quantiatively interpolative, sub-meter resolution, malaria, mosquito, 

frequency signature, prognosticated, ungeosampled capture points  (e.g., seasonal, eco-georeferenceable, 

geosampled, hyperproductive habitats) seasonal  geolocations without limit points in  D, but only if there exists a 

holomorphic function  f  in D  with zeros at the points  and only at these points. The part of the theorem concerning 

the existence of an entire LULC function with arbitrarily specified zeros may be generalized to functions of several 

complex, endmember, capture point variables as follows: Let each geosampled, geo-spectrotemporal, malaria, 

mosquito, seasonal, eco-georeferenecable, predicte LULC signature , sub-meter resolution, grid-stratifiable, capture  

point  of the complex space , , be brought into correspondence with one of its neighbourhoods  and with a 

function  which is holomorphic in . In so doing, prolific habitat may be seasonally identified based on simulated 

signatures and empirically geosampled, larval density, frequency  counts Moreover, suppose this is done in such a way 

that if the intersection  of the neighbourhoods of the capture points  is non-empty, then the 

fraction   which subsequenctly would be  a holomorphic function in . Under these conditions 

there would exist an entire function f  in   in the prognosticative, vector arthropod, endmember model such that the 

fraction  is a holomorphic function at every forecasted capture  point . This theorem is known as Cousin's 

second theorem.  

In mathematics, the Cousin problems are two questions in several complex variables, concerning the existence 

of meromorphic functions that are specified in terms of local data. Employing this theoreum  et  may 

robustly reveal a covering of a complex manifold  M in an ovispoition,  malaria, mosquito, sub-meter resolution, grid-

stratifiable,  LULC  model specification for asymptotically targeting seasonal, eco-georeferenceable, hyperproductive, 

aquatic, larval habitat, geo-spectrotemporal foci based on the open subsets , in each of which may be definable as  a 

meromorphic function ; assuming that the functions  are holomorphic in  for 

all (compatibility condition).There may be a requirement to construct a function   f which is meromorphic on the 

entire manifold   such that the functions  are holomorphic in  for all in these paradigms  for rendering 

optimal vulnerability forecasts.  In other words, the problem of summarizing geo-spectrotemporally adjusted, seasonal 

eco-georeferenceable, targeted, hyperproductive, malaria, mosquito,  aquatic, larval habitat datasets  based on an 

iteratively interpolative, endmember, sub-meter resolution, eco-geoclassified,  gridded, LULC  signature  is to construct 

a global meromorphic function with locally specified polar singularities. The functions   , hence would be defined 

in the pairwise intersections  of elements of , by then defining a holomorphic -cocycle for , (i.e. they satisfy 

the conditions for all ).  

A more general problem (known as the first Cousin problem in cohomological formulation) is the following. 

Given holomorphic functions   in the intersections , satisfying the cocycle conditions may to find 

functions , holomorphic in , such that for all  in an ento-ecoepidemiological, forecast, 

vulnerability, malaria mosquito, aquatic, larval habitat model for asymptotically targeting eco-georeferenceable, 

seasonal, hypeproductive, malaria. mosquito, capture point foci. If the functions  correspond to the krigable, ento-

ecoendmeber LULC, signature, vector arthropod  data of the first Cousin problem then the  above functions   would 

exist in the model realizations as the function  may be  definable in the  model  which may 

reveal an output which is  meromorphic throughout M . Further this output may reveal  a solution of the first Cousin 

problem. Conversely, if  f is a solution of the first Cousin problem employing the endmember ,capture point, 

empirically geosampled, LULC, aquatic, larval habitat,  geo-spectrotemporal, data , then the holomorphic 

functions  which may   asymptotically optimally, geolocate seasonal, hypeproductive, unknown foci.Thus, 

a specific first Cousin problem is solvable if and only if the corresponding cocycle is a holomorphic coboundary in the 

forecast, vulnerability, ento-ecoendmember LULC model. 

The first Cousin problem may also be formulated in a local version in the ento-ecoepidmeiological, geo -

spectrotemporal, aquatic, larval habitat, prognosticative endmember, sub-mter resolution, signature, malaria mosquito 

model output (i.e.,eco-georeferenceable, geolcations of seasonally hyperproductive, oviposition  foci). To each set of 

capture point, geosampled, eco-georeferenceable, covariates  satisfying the compatibility condition there 

may correspond a uniquely defined global section of the sheaf , where  and  O are the sheaves of germs of 

meromorphic and holomorphic functions, respectively. The correspondence may be such that any global section 

https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Several_complex_variables
https://en.wikipedia.org/wiki/Meromorphic_function
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of  corresponds to some first Cousin problem (the value of the section  corresponding to a seasonal, 

hyperproductive foci  at a capture point   ) which may  be  the element of  with representative . 

The malaria mosquito immature habitat of global sections   maye be mappable whence   

each meromorphic LULC eco-geoclassified, ento-ecoendmeber, krigabale, geo-spectrotemrpoal, function f  on M  to a 

section  of ,   is the class in  of the germ of  f at the capture  point , . The localized first 

Cousin problem would then be quantatable as a global section  of the sheaf , to find a  unknown habitat 

meromorphic function  f on  M  (i.e. a section of ) such that  in the ento-ecoepidemiological, 

oviposition, forecast, vulnerability, endmember model output. 

Theorems concerning the solvability of the first Cousin problem in an oviposition, malaria, mosquito model 

may be regarded as a multi-dimensional generalization of the Mittag-Leffler theorem based on the construction of a 

meromorphic signature LULC ento-ecoendmember function with prescribed poles. The problem in cohomological 

formulation, with a fixed covering , may be  solvable (for arbitrary compatible ) if and only 

if  (the Čech cohomology for  with holomorphic coefficients is trivial in  sub-meter resolution, grid-

stratifiable, eco-geoclassifiable, forecast, vuylnberability model. The Mittag-Leffler theorem on expansion of a 

meromorphic function is one of the basic theorems in analytic function theory, for  rendering meromorphic functions 

which may reveal an analogue of the expansion of a rational function into the simplest partial fractions  whence 

asymptotically, optimally, remotely, geo-spectrotemporally targeting seasonal, unknown, aquatic, larval habitat, 

hyperproductive, eco-endmember, eco-geoclassifiable LULC foci . 

Hence by  letting  {an}∞n=1be a sequence of distinct, complex, geo-spectrotemporal, geosampled, 

ovipsoition, ento-ecoepidemiological, malaria, mosquito, aquatic, larval habitatcapture points, 

,|a1|≤|a2|≤…,limn→∞an=∞,|a1|≤|a2|≤…,limn→∞an=∞,and let {gn(z)}{gn(z)} be a sequence of rational, explicative, 

time series, dependent functions of the form gn(z)=∑k=1lncnk(z−an)k=,so that  the aquatic, larval, geosampled, 

density, count variables  is the unique pole of the corresponding function gn(z), then there would be explanatory, eco-

georeferenecable,  capture point, predicted meromorphic functions f(z) in the complex z-plane C having poles based on 

sample time intervals but  only  if there are quantaifiable principal parts of the Laurent series corresponding to the 

capture points.   

The Laurent series is a representation of a complex function f(z) as a series. Unlike the Taylor series which 

expresses f(z) as a series of terms with non-negative powers of z, a Laurent series includes terms with negative 

powers.If  is analytic throughout an oviposition, eco-georeferenecable, forecast, vulnerability, geo-spectrotemrpoal, 

signature , LULC malaria, mosquito sub-mter resolution, grid-stratfiied, model in a riceland, agro-irrigated village 

and centered at  of the radii and respectively, then there exists a unique series expansion in terms of 

calculable positive and negative explanative  powers of , where 

= and =  (see Korn and Korn 1968).  

From a oviposition, eco-georeferenecable, forecast, vulnerability, geo-spectrotemrpoal, signature , LULC 

malaria, mosquito Cauchy integral formula, 

= = = . 

Cauchy's integral formula states that where the integral is a contour integral along the 

contour  enclosing a predicted, hyperproductive, malaria, mosquito, aquatic, larval habitat, capture point [1] It may 

be derivable in a forecast, vulnerability, sub-meter resolution, grid-stratifiable, signature LULC model by considering 

the contour integral  for defining a path as an infinitesimal counterclockwise circle around the capture 

point , and defining the path as an arbitrary loop with a cut line (on which the forward and reverse contributions 

https://www.encyclopediaofmath.org/index.php/Mittag-Leffler_theorem
https://www.encyclopediaofmath.org/index.php/Laurent_series
http://mathworld.wolfram.com/Analytic.html
http://mathworld.wolfram.com/CauchyIntegralFormula.html
http://mathworld.wolfram.com/ContourIntegral.html
http://mathworld.wolfram.com/Contour.html
http://mathworld.wolfram.com/ContourIntegral.html
http://mathworld.wolfram.com/Circle.html
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cancel each other out) so as to go around . The total path in the model would  then couls be defined by so 

whwnce aymptotically targeting seaosnal, eco-georeferenceable, prolific 

capture point endmebmer foci.  

From the Cauchy integral theorem, the contour integral along any path not enclosing a pole is 0[9]. If is 

analytic in some simply connected region , then for any closed contour completely  in  an 

oviiposition, eco-georeferenecable, predictive malaria risk model contained in . Writing as and as 

 then gives = = From Green's 

theorem, 

= , = so (◇) 

becomes mathematics, Green's theorem gives the relationship between a line integral around a simple closed curve C 

and a double integral over the plane region D bounded by C. 

[10]. But the Cauchy-Riemann equations will 

require that = and = so Q.E.D. for asymptotically targeting seasonal, eco-

georeferenecable, aquatic, larval habitat, malaria, mosquito, capture point, hyperproductive foci.[i.e., 

]. 

Therefore, the first term in the above equation is 0 since does not enclose the pole, and hence a malariologist 

or medical entomologist are left with Now, let , so . Then 

= = But an experimenter is free to allow the radius to 

shrink in a sub-mter reoslition, grid-stratfiiable, vector arthropod, grid-stratfiiable, eco-epidemiological, LULC model 

for asymptotically, geo-spectrotemrpoally targeting unknown seasonal, eco-georferenecable, hyperproductive foci  to 0, 

so = = = =  If multiple loops are made around 

the capture point , then the endemic equation would become  where is 

the contour winding number.  

The winding number of a contour about a capture point , denoted  may be definable in a sub-meter 

resolution, grid-stratifiable, eco-endmember, geoclassifiable, prognosticative, LULC, signature, frequency model  by 

.whcih may   rende4r the number of times curve passes (counterclockwise) around an 

unknown,   seasonal, malaria mosquito, capture point. Counterclockwise winding is assigned a positive winding 

number, while clockwise winding is assigned a negative winding number[2]. The winding number is also called the 
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index, and denoted [4].  The contour winding number was part of the inspiration for the idea of the Brouwer 

degree between two compact, oriented manifolds of the same dimension. In the language of the degree of a map, if 

is a closed curve (i.e., 0).As such the number  can be considered as a function from to  in 

a malaria model for aymptotically geo-spectrotemporally targteing un-geosampled, seaonally prolific, aquatic, larval 

habitats on geoclassfiable, eco-endmember LULCs. In that context, the winding number of around anunknown  

capture point in  may be  given by the degree of the map . 

A similar formula  may hold for the ento-cndmember LULC, malaria, mosquito, aquatic, larval, habitat, 

capture point, sub—meter resolution, signature, frequency derivatives of 

, = = = which 

may be equivalent to t = Iterating again, may 

reveal. in the model renderings. Continuing the process and adding the contour winding 

number , may then reveal whence optimally asymptotically geo-

spectrotemporally targeting un-geosampled, seasonal, eco-georeferenceable, hyperproductive foci.   

Now, since contributions from the cut line in opposite directions cancel out, hence 

= =

in an eco-georeferenecable, forecast, vulnerability, 

signature, LULC malaria, mosquito sub-meter resolution, grid-stratfiable model For the first integral, 

. For the second, . In so doing, a Taylor series (valid for ) may 

be parsimoniously obtainable employing  the equation 

=  which could thereafter algebraically be 

related which could be quantitated by 

whence the second term has 

been re-indexed in the model derivatives. 

A Taylor series is a series expansion of a function about a point. A one-dimensional (1-D) Taylor series is an 

expansion of a real function about a capture point is given 

by I f , the 

expansion is known as a Maclaurin series. Taylor's theorem (actually discovered first by Gregory) states that any 

function satisfying certain conditions can be expressed as a Taylor series. The Taylor (or more general) series of a 

function about a point up to order may be found using Series[f, x, a, n ]. The th term of a Taylor series of a 
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function can be computed in the Wolfram Language using SeriesCoefficient[f, x, a, n ] which may be given by the 

inverse Z-transform Taylor series of some common functions includeing 

= , = , =

, = , =

 and also the vulnarbaility, forecast, equation 

=  

To derive the Taylor series of a function , in an eco-georeferenecable, forecast, vulnerability, eco-

endmember, signature, frequency, LULC malaria, mosquito sub-meter resolution, grid-stratified,  geo-spectrotemporal 

model note that the integral of the st derivative of from the capure point to an arbitrary unknown 

point  may be  given by where is the th derivative of 

evaluated at , and is therefore simply a constant. Now by integrating an interatively, interpolative,aquatic, larval 

habitat, malaria, mosquito, eco-endmember LULC  signature, an experimenter may obtain 

=  

where is again a constant. Integrations then could render 

Rearranging this equation then would render the 1-D Taylor series 

= = Here,  

would be  a remainder term known as the Lagrange remainder, which may be  given by 

Rewriting the repeated integral then would render  in the 

malaria model output.  

Now, from the mean-value theorem for a function , it must be true that for 

some . Therefore, integrating times could render  the result  in an 

empirical geo-spectrotemporal, signature, frequency, sub-meter resolution dataset of vulnerability forecasts ( 

asymptotically targeted , seasonal, hyperproductive, ento-ecoendmember, capture point foci) so the maximum error 

after terms of the Taylor series is the maximum value of (18) running through all . Note that the Lagrange 

remainder is also sometimes taken to refer to the remainder when terms up to the st power are taken in the 

Taylor series.  

http://www.wolfram.com/language/
http://reference.wolfram.com/language/ref/SeriesCoefficient.html
http://mathworld.wolfram.com/Z-Transform.html
http://mathworld.wolfram.com/Derivative.html
http://mathworld.wolfram.com/LagrangeRemainder.html
http://mathworld.wolfram.com/RepeatedIntegral.html
http://mathworld.wolfram.com/Mean-ValueTheorem.html
http://mathworld.wolfram.com/TaylorSeries.html#eqn18


International Research Journal of Computer Science and Application                       

Vol. 2, No. 1, March 2018, pp. 1-181                                                                         

  Available Online at http://acascipub.com/Journals.php 
 

 

 

168 

Copyright © acascipub.com, all rights reserved 

Taylor series can also be defined for functions of a complex eco-georeferenecable, forecast, vulnerability, geo-

spectrotemporal, geoclassfiiable, LULC malaria, mosquito sub-meter resolution, explanatory model, frequency, 

robustifiable, gridded variable. In a Cauchy integral formula, 

= = = In the interior of ,  in the 

malaria model residual datatset so, employing it would follow that 

= = Using the Cauchy integral formula for 

derivatives, an alternative form of the 1-D Taylor series may be obtainable by letting 

so that Substituting this result into (◇)could render 

 

A Taylor series of a real function in any time series, malaria, mosquito habitat variable  may be  given 

by :  which when summed 

with could be equivalent 

to This can be further generalized for a real 

function in variables, Rewriting the frequency estimator then 

could asymptotically, optimally, geo-spectrotemporally render 

Subsequently  taking I n could then 

render which would be equivalent to 

 .Taking any  

eco-endmember, geoclassfiable, geosampled, LULC, signature frequency could then render  

 

or, in vector form  The zeroth- and first-order terms are and 

,respectively. The explanative second-order term may then be  

= so the first few terms of the expansion would be 

 whence aymptotically geo-spectrotemporally 

targeting seasonal, un-geosampled, aquatic, larval habitat, capture point, hyperproductive, eco-endmember, LULC foci.  
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  Re-indexing the An. arabiesnis, aquatic, larval habitat, sub-meter resolution, LULC  again, revealed 

Since the integrands, including 

the function , were analytic in the annular region defined by and , the integrals were independent of the path 

of integration in that LULC region. We replaced paths of integration and by a circle of radius with , 

then  

= = =

Generally, the path of integration can be any path that lies in the annular region and encircles once 

in the positive (counterclockwise) direction[4].  

The complex residues  in the malaria model were therefore defined by Note that 

the annular region itself was expanded by increasing and decreasing until singularities of that lay just outside 

or just inside a. If has no singularities inside , then all the terms in (◇) equal zero and the Laurent series 

of (◇) reduces to a Taylor series with coefficients[6]’. 

The Laurent generalization of a power series in non-negative integral powers of the difference  or in 

non-positive integral powers of  in the form [2].The series ( is understood as the sum of two 

series: the regular part of the Laurent series, and the principal part of the Laurent 

series[6]. The series is assumed to converge if and only if its regular and principal parts converge. Properties of Laurent 

series include: 1) if the domain of convergence of a Laurent series contains interior points, then this domain is a 

circularannulus  with centre at the point ; 2) at all interior points of 

the annulus of convergence  the series (1) converges absolutely; 3) as for power series, the behaviour of a Laurent 

series at points on the bounding circles  and  can be very diverse; 4) on any compact set  the 

series converges uniformly; 5) the sum of the series (1) in  is an analytic function ; 6) the series can be 

differentiated and integrated in  term-by-term; 7) the coefficients  of a Laurent series =may be optimally 

,asymptotically, parsimoniously definable in terms of its sum  by the 

formulas in a sub-meter resolution, grid-stratifiable, eco-endmember, 

prognosticative, signature, frequency, eco-georeferenceable,  LULC model 

where  is any circle with centre  situated in ; and 8) expansion in a Laurent 

series is unique, that is, if  in D, then all the coefficients of their Laurent series in powers 

of  coincide[8]. 

For the case of a centre at a unknown, capture  point at infinity, , the Laurent series may take the 

form whence  the regular part is while the principal part is .The domain of 

convergence of  this series may have  the form  where the formulas tend to  go 

into whence .Otherwise all the 

properties would be the same as in the case of a finite centre .The application of Laurent series is based mainly on 
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Laurent's theorem: Any single-valued analytic function  in an annulus  can 

be represented in  by a convergent Laurent series [8]. In particular, in a punctured capture point, sub-meter resolution, 

geo-spectrotemporally, asymptotically,optimally forecasted unknown, eco-georeferenecable, geoclassifiable,aquatic, 

larval  habitat neighbourhood  of a prolific,malaria, mosquito, un-geosampled, capture 

point  of single-valued, iteratively interpolated, LULC kriged signature character derived from  an analytic 

function  may be represented by a Laurent series, which serves as the main instrument for investigating its 

behaviour in a neighbourhood of an isolated singularcapture  point. 

For holomorphic functions  of several complex variables  the following proposition can be 

regarded as the analogue of Laurent's theorem: Any function , holomorphic in the product D of 

annuli , can be represented in D  as a convergent multiple Laurent 

series is which the summation extends over all vector arthropod-related, geo-spectrotemporal, 

signature, frequency, eco- endmember, LULC, integral multi-

indices where  is the product of the 

circles , . The domain of convergence 

of the series (4) is logarithmically convex and is a relatively-complete Reinhardt domain. However, the use of multiple 

Laurent series is limited, since for  holomorphic functions  cannot have isolated singularities.domain  D in 

the complex space , , with centre at a point , with the following property: Together with 

any point , the probabilisc paradigm domain also may contain the 

set  

A Reinhardt domain  with  is invariant under the 

transformations , , . The Reinhardt domains constitute a subclass of the 

Hartogs domains (cf. Hartogs domain) and a subclass of the circular domains, which are defined by the following 

condition: Together with any , the absolute forecastable, domain would contains the 

set i.e. all malaria mosquito seasonally forecasted , 

hyperproductive, eco-georeferenceable ,capture points of the circle with centre  and 

radius  that lie on the complex line through  and .A Reinhardt domain   D is 

called a complete Reinhardt domain if together with any malaria, mosquito, geosampled eco-endmember, sub-mter 

resolution, geocalssified, LULC, capture point  it also contains the 

polydisc A complete Reinhardt domain is star-like with respect to 

its centre  (cf. Star-like domain).Examples of complete Reinhardt domains are balls and polydiscs in . A circular 

domain D is called a complete circular domain if together with any pont  it also contains the entire 

disc .A Reinhardt domain D is called logarithmically convex if the image   

of a non-heuristically optimizable aset under the 

mapping is a convex set in the real space [9].  An important property of 

logarithmically-convex Reinhardt domains is the following: Every such domain in  is the interior of the set of points 

of absolute convergence (i.e. the domain of convergence) of some power series in , and 

conversely: The domain of convergence of any power series in  is a logarithmically-convex Reinhardt 

domain with centre . 

Hence, Let  be any field with an interpolated LULC, sub-mter resolution, eco-endmember, geo-

spectrotemporal, geosampled, malaria, mosquito, forecast, vulnerability model for optimally asymptotically targeting 

seasonal, eco-georeferenceable, hyperproductive, aquatic, larval habitat , capture point foci . The Laurent series then 
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could be used to denote a formal expansion of the form The expressions may be added 

termwise and multiplied as follows: where in the paradigm. The result 

may be  a field, denoted by . It would be the quotient field of the ring of formal power series , and is 

called the field of formal Laurent series. A valuation is defined by  if [9] .In so 

doing,   would be  a discretely valued complete field; the ring of integers is , ansd the maximal ideal 

is  whicle  the residue field is . Subsequently, a  Laurent polynomial synthesized from an empirical dataset fo 

geosampeld, malaria, mosquito, sub-mter resolution, eco-endmember LULC,  signature estimators over  would be  an 

expression , ,  for optimally targeting seasonal, prolific foci.  

All these functions f(z)fare representable in the form of a Mittag-Leffler expansion 

f(z)=h(z)+∑n=1∞[gn(z)+pn(z)],(2)(2)f(z)=h(z)+∑n=1∞[gn(z)+pn(z)], where pn(z) is a polynomial chosen in 

dependence of  gn(z) so that a series ( an uncoalesced dataset of frequency, sub-meter resolution, grid-stratified LULC 

datasets) is uniformly convergent (after the removal of a finite number of terms) on any compact set K⊂C where h(z) is 

an arbitrary entire function.The Mittag-Leffler theorem implies that any given meromorphic function f(z) in C with 

poles and corresponding principal parts gn(z) of the Laurent expansion of f(z) in a neighbourhood   can be expanded in 

a capture point, malaria mosquito geosampled, geo-spectrotemporal,  series  where the entire function h(z) is 

determined by f(z). Mittag-Leffler may provide a general construction of sub-meter resolution, eco-endmember, 

signature, LULC polynomials pn(z) for finding the entire function h(z) relative to a given f(z). To obtain optimal 

forecasts (i.e, field-verifiable, seasonal, unknown eco-georeferenceable, prolific, capture point, aquatic, larval habitats) 

based on a kriged robust signal ,   methods of the theory of residues (cf. Residue of an analytic function) may be 

applied. 

 

A generalization of the quoted theorem, also due to Mittag-Leffler, states that for any domain D of the 

extended complex plane C¯, any sequence {an} of all limit points of which are in the boundary ∂D, and corresponding 

principal parts (1), there is a function f(z)f(z), meromorphic in DD, having poles at {an}{an}, and only there, with the 

given principal parts (1). In this form the Mittag-Leffler theorem generalizes to open Riemann surfaces DD (see [7]); 

for the existence of meromorphic functions on compact Riemann surfaces with given singularities see Abelian 

differential; Differential on a Riemann surface; Riemann–Roch theorem. The Mittag-Leffler theorem is also true for 

abstract meromorphic functions gngn, f:D→Ff:D→F, D⊂C¯D⊂C¯, with values in a Banach space FF (see [8]). 

 

Another generalization of the Mittag-Leffler theorem states that for any 

sequence {an}⊂C{an}⊂C, |a1|≤|a2|≤…|a1|≤|a2|≤…, liman=∞liman=∞, and corresponding 

functionsgn(z)=∑k=1∞cnk(z−an)kgn(z)=∑k=1∞cnk(z−an)k that are entire functions of the 

variable wn=1/(z−an)wn=1/(z−an), there is a single-valued analytic function f(z)f(z) having singular points at anan, and 

only there, and with principal parts gn(z)gn(z) (see [3]).  

 

A generalization of the quoted theorem, also due to Mittag-Leffler, states that for any domain DD of the 

extended complex plane C¯C¯, any sequence {an}{an} of points an∈Dan∈D all limit points of which are in the 

boundary ∂D∂D, and corresponding principal parts (1), there is a function f(z)f(z), meromorphic in DD, having poles 

at {an}{an}, and only there, with the given principal parts (1). In this form the Mittag-Leffler theorem generalizes to 

open Riemann surfaces DD (see [7]); for the existence of meromorphic functions on compact Riemann surfaces with 

given singularities see Abelian differential; Differential on a Riemann surface; Riemann–Roch theorem. The Mittag-

Leffler theorem is also true for abstract meromorphic functions gngn, f:D→Ff:D→F, D⊂C¯D⊂C¯, with values in a 

Banach space FF (see [8]). 

Another generalization of the Mittag-Leffler theorem states that for any 

sequence {an}⊂C{an}⊂C, |a1|≤|a2|≤…|a1|≤|a2|≤…, liman=∞liman=∞, and corresponding 

functionsgn(z)=∑k=1∞cnk(z−an)kgn(z)=∑k=1∞cnk(z−an)kthat are entire functions of the 

variable wn=1/(z−an)wn=1/(z−an), there is a single-valued analytic function f(z)f(z) having singular points at anan, and 
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only there, and with principal parts gn(z)gn(z) (see [3]).For analytic functions of several complex variables a 

generalization of the Mittag-Leffler problem on the construction of a function with given singularities is the first 

(additive) Cousin problem (cf. Cousin problems). In this connection the following equivalent statement of the Mittag-

Leffler theorem is often useful. Let Ω=∪jΩjΩ=∪jΩj, where the ΩjΩj are open sets in CC, and let there be given 

meromorphic functions gjgj, respectively, on the sets ΩjΩj, where the differences gj−gkgj−gk are regular functions on 

the intersections Ωj∩ΩkΩj∩Ωk for all jj and kk. Then there is on ΩΩ a meromorphic function ff such that the 

differences f−gjf−gj are regular on ΩjΩj for all jj (see [5], [6]).For the Mittag-Leffler theorem on the expansion of 

single-valued branches of an analytic function in a star see Star of a function element. 

 

 For analytic functions of several complex variables a generalization of the Mittag-Leffler problem on the 

construction of a function with given singularities is the first (additive) Cousin problem (cf. Cousin problems). In this 

connection the following equivalent statement of the Mittag-Leffler theorem is often useful. Let Ω=∪jΩjΩ=∪jΩj, where 

the Ωj are open sets in C, and let there be given meromorphic functions gj, respectively, on the sets Ωj, where the 

differences gj−gk are regular functions on the intersections Ωj∩Ωk for all j and k. Then there is on Ω a meromorphic 

function f such that the differences f−gj are regular on Ω for all j (see [5] and [6]). A specific first Cousin problem 

on  M is solvable if and only if the corresponding section of  belongs to the image of the habitat signature 

mapping . An arbitrary first Cousin problem on M  is solvable if and only if  is surjective [6]. On any complex 

manifold M one has an exact sequence  

If the Čech cohomology for  with coefficients in  is trivial (i.e. ) in an eco-geoclassfiied, 

malaria, mosquito, capture point, LULC model for asymptotically geo-spectrotemporally targeting, eco-

georeferenceable, seasonal, hyperproductive, geo-spectrotemporal, capture point, eco-endmember foci, then  is 

surjective and  for any covering  of . Thus, if  occurs in a sub-meter resolution, grid-

stratifiable, forecast, vulnerability, signature malaria, mosquito, model any first Cousin problem is solvable 

on  employing  the classical, cohomological and local version. In particular, the problem is solvable in all domains of 

holomorphy and on Stein manifolds (cf. Stein manifold). If , then the first Cousin problem in  is solvable in the 

signature paradigms if and only if  is a domain of holomorphy. An example of an unsolvable first Cousin problem in 

these model outputs would be  , , , , . 

Given an open covering  of a complex manifold  and, in each , a meromorphic 

function ,  on each component of , with the assumption that the functions  are 

holomorphic and nowhere vanishing in  for all  (compatibility condition). It is required to construct a 

meromorphic function  on M  such that the functions  are holomorphic and nowhere vanishing in  for 

all .The cohomological formulation of the second Cousin problem is as follows. Given the covering  and 

functions , holomorphic and nowhere vanishing in the intersections , and forming a multiplicative -cocycle, 

it is required to find functions , 

holomorphic and nowhere vanishing in , such that  in  for all . If the 

cocycle  corresponds to the data of a second Cousin problem and the required  exist, then the 

function  is defined and meromorphic throughout  and is a solution to the given second 

Cousin problem. Conversely, if a specific second Cousin problem is solvable, then the corresponding cocycle is a 

holomorphic coboundary. The localized second  Cousin problem. To each set of data  for the second Cousin 

problem there corresponds a uniquely defined global section of the sheaf  (in analogy to the first Cousin 

problem), where (with 0 the null section) is the multiplicative sheaf of germs of meromorphic 

functions and  is the subsheaf of  in which each stalk  consists of germs of holomorphic functions that do not 

vanish at . The mapping of global sections  

The maps a meromorphic function  f  to a section  of the sheaf , where  is the class 

in  of the germ of  f   at , . The localized second Cousin problem is: Given a global section  of the 
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sheaf , to find a meromorphic function  on M,  on the components of   M (i.e. a global section of ), 

such that . 

 

The sections of  uniquely correspond to divisors (cf. Divisor), therefore  is called 

the sheaf of germs of divisors[7]. A divisor on a complex manifold  is a formal locally finite sum , 

where  are integers and analytic subsets of  of pure codimension 1. To each meromorphic function 

f  corresponds the divisor whose terms are the irreducible components of the zero and polar sets of  f with respective 

multiplicities , with multiplicities of zeros considered positive and those of poles negative. Hence any iteratively 

interpolative, ento-ecoendmember, eco-geoclassifiable, sub-mter resolution, aquatic, larval habitat mapping  of  each 

LULC function f  to its signature divisor ; (i.e., proper frequency divisors) may enable the model to target seasonal, 

eco-georeferenceable hyperproductive capture point foci. The second Cousin problem in terms of these signature 

divisors may be that a divisor  on the manifold , may be optimally usable to construct a meromorphic 

function f on M such that . 

Theorems concerning the solvability of the second Cousin problem may be regarded as multi-dimensional 

generalizations of Weierstrass' theorem on the construction of a meromorphic function with prescribed zeros and poles 

especially when quantitating empirical datasets of geosampled, An. arabiensis, eco-endmember, eco-geoclassfiiable 

LULC, sub-mter resolution, grid-stratifiable, aquatic, larval habitat, signature, frequency datasets. As in the case of the 

first Cousin problem, a necessary and sufficient condition for the solvability of any second Cousin problem in these 

vulnerability paradigms in cohomological version is that . Unfortunately, the sheaf  is not 

coherent, and this condition is less effective. The attempt to reduce a given second Cousin problem to a first Cousin 

problem in a malaria mosquito, forecast, vulnerability, eco-geoclassifiable, LULC signature model for optimally 

asymptotically targeting seasonal, eco-georferenecable, prolific foci may be  by taking logarithms encounters an 

obstruction in the form of an integral 2-cocycle. In so doing an exact sequence  

may be extarctable where   Z is the constant sheaf based on the geosampled density, larval count, integer values. Thus, 

if , any second Cousin problem is solvable on  M, and any divisor is proper in these 

paradigms. 

 If  M, is a Stein manifold, then  is an isomorphism; in  any sub-meter resolution, eco-endmember, malaria, 

mosquito, ovispsoition, eco-geoclassfiable, LULC, signature model, then the topological condition  on a 

Stein manifold  M is necessary and sufficient for the second Cousin problem cohomological version to be solvable ( i.e., 

parsimonious targeting of hyperproductive , aquatic, larval habitat, seasonal foci). The composite LULC 

mapping ,  may illustrate each signature divisor  to an 

element  of the group , which may be  known as the Chern class of  in these paradigms The specific 

second Cousin problem corresponding to  may then be  solvable, assuming , if and only if the Chern 

class of  is trivial:  in the model output. On a Stein manifold, the LULV mapping  would be surjective; 

moreover, every ento-ecoepidemiological, sub-meter resolution, grid-stratifiable, discontinuous, capture point element 

in  may be expressed as  for some divisor  with positive multiplicities . Thus, the obstructions to the 

solution of the second Cousin problem on a Stein manifold M may be  completely describle in a sub-meter resolution, 

grid-stratifiiable, eco-geoclassifiable, iterative, interpolative, signature LULC model for optimally asymptotically 

identifying unknown, seasonal, hyperproductive, aquatic, larval habitat, capture point foci  by the group  but 

the following restrictions must be maintained: 

1) ; the first Cousin problem is unsolvable ; the second Cousin problem is unsolvable, 

(e.g., for the divisor  with multiplicity 1)  

2) ,  may be  one of the eco-endmember, components of the intersection of   M, 

and the plane  with multiplicity 1. The second Cousin problem is then unsolvable ( M, is a domain of 

holomorphy, the first Cousin problem is solvable) in the paradigm. 

https://www.encyclopediaofmath.org/index.php/Divisor
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3) The first and second Cousin problems are solvable in domains , where  Dj are plane domains 

and all  Dj, with the possible exception of one, are simply connected. of c0 in a LULC  model specification for but it 

fails for Hilbert spaces. 

The following list of examples is intended to be a representative sampling of some of the more useful known 

proximinal sets which may help malariologists, medical entomologists and other researchers to  employ geoclassfiiable, 

grid-stratified, sub-meter resolution, eco-endmember, ento--epidemiological, malaria-related, LULC, orthogonal, or 

geometric mean regression  models for optimally targeting seasonal, un-geosampled, hyperproductive,capture point, 

aquatic, laval, habitat  foci: 

 

(1) Any reflexive subspace (Klee [1949]), e.g., a finite-dimensional subspace (Riesz [1918]). 

(2) Any weak* closed subset of a dual space (Phelps [1960]). 

(3) Any closed convex subset of a reflexive space (Klee [1918]). 

(4) The rational functions,G%J’i,n” &[a, b], 1 < p < CO( Walsh [1931], 

Efimov and Stechkin  lo]). 

(5) The exponential sums in L,,[a, b], 1 < p < co (Hobby and Rice[1967],  

6) The splines in C[u, b] of order n with k free knots  

(7) Any weak-operator closed subset of the space of operators on aHilbert space, (e.g. the  positive or Hermitian 

operators (Halmos [1972]). 

The known proofs of these results exhibit a variety of techniques, although there may a common thread of 

“compactness” interwoven throughout the theoreums for constructing a robust, eco-geoeferenecable, sub-meter 

resolution, grid-stratifiable, endmember, LULC, prognosticative, vulnerability model.  

 

In this paper we proved a simple yet general existence theorem can help quantitate an endmember, grid-

stratified, oviposition, capture point, sub-meter resolution, malaria, mosquito, forecast, vulnerability, eco-

georeferenecable, LULC model. To do this, we first generalized the important notion of an “approximatively compact” 

set (which was introduced by Efimov and Stechkin [I961]) and later extended to“approximatively weakly compact” by 

Breckner [1968]) to what we call “approximatively T-compact” for a “regular mode of convergence” in the model. We 

proved that  each approximatively T-compact set of eigendecomposable, orthogonally, seasonal, ecogeoreferenceable, 

oviposition, hyperproductive, aquatic, larval, habitat foci, endmember  explanator on a geoclassified, grid-stratifiable  

LULC  could be  proximinal  to another non-prolific aquatic, larval habitat, eco-georeferenecable eigenvector-derived, 

foci (i.e., negative autocorrelation). Moreover, its metric projection validated checked the geo-spectrotemporal, LULC, 

eco-endmember, wavelength, frequency,LULC  prognosticators which we noted satisfied a certain non-incessant  

condition in the model output. 

.  

The proof of the claim itself was deceptively simple to geo-spectrotemporally derive from the oviposition, eco-

endmember, eco-georeferenecable, ento-ecoepidemiological, malaria, mosquito, oviposition, LULC model. For 

example, we considered the boundary Q = [−1, 1]n+1 ⊂ R n+1. This equation represented multivariate, LULC, grid-

stratified, ecogeoreferenecd, vulnerability, capture point, orthogonal, endmember   polynomials whose largest 

coefficient was 1. As none of these polynomials were 0 identical, by compactness min{ai}∈∂Q ||P(a0, a1, . . . , an)|| = k 

> 0. We noticed that if  P was linear in the sub-meter resolution,  LULC, forecast, vulnerability endmember  model, 

then P(λa0, λa1, . . . λan) = λP(a0, a1, . . . , an). We proved that the largest coefficient of a polynomial P in the ento-

ecoepidemiological model was M, ||P|| ≥ kM for optimally targeting seasonal, eco-georefereneced, hypeproductive, 

aquatic, larval, habitat, endmember foci. 

We also quantitated the sufficiency of the Chebyshev criterion in the malaria, oviposition, endmembr LULC, 

prognosticative, vulnerability model. Henceforth, a malariologist or medical entomologist should be  able to  prove if  a 

polynomial P satisfys the Chebyshev criterion in any geo-spectrotemporal, forecast, vulnerability, malaria, mosquito, 

capture point, LULC, endmember, oviposition, risk model for precisely targeting seasonal, eco-georeferenecable, 

hyperproductive, aquatic, larval, habitat foci. Suppose polynomial Q is such that ||f − Q|| < ||f − P|| in the frequency, 

model output. In such circumstances, a malariologist or medical entomologist may employ the polynomial P – Q for 

optimally quantitating an empirical dataset of malaria, mosquito, endmember, sub-meter resolution, grid-stratifiable, 

regressively parameterizable, LULC estimators. Suppose that at x odd, P > f while at x even, P < f in the model output. 

Then P – Q would be strictly positive at x odd and negative at x even. This means that there would exists P − Q  in the  
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oviposition,  regressable capture point, empirical orthogonal, eco-endmember, LULC  dataset which may have  zeros 

between all geosampled grid-stratifiable, sub-meter resolution, eco-georeferenecable seasonal hyperproductive, aquatic, 

larval habitats, so the paradigm would have at least n + 1 zeros. But it may be also a polynomial of degree at most 

geosampled capture points n, so it may be 0. Thus, P = Q would be identical in a geo-spectrotemporal, malaria 

mosquito, model, prognosticated, vulnerability residuals for targeting unknown, eco-georeferenceable, aquatic, larval, 

habitat, hyperproductive, seasonal foci.  

α and β should be able  solve the following minimization problem in any, geosampled, eco-georeferenceable,  

malaria, mosquito, forecast, vulnerability, hyperproductive, orthogonal, endmember,  LULC,  geo-spectrotemporal 

model by optimally quantitating 

argminα,βQ(α,β)arg⁡minα,βQ(α,β),whereQ(α,β)=∑i=1n(yi−α−βxi)2Q(α,β)=∑i=1n(yi−α−βxi)2.The malariologist or 

the medical entomologist may minimize the following function, in order to 

achieveα,βα,β:argminα,βP(α,β)arg⁡minα,βP(α,β)whenst P(α,β)=max1≤i≤n|yi−α−βxi|. Serious violations in 

homoscedasticity (e.g., assuming a distribution of oviposition, wavelength,  frequency, sub-meter resolution,  LULC, 

capture point,  endmember,signatures are homoscedastic when in reality it is heteroscedastic) in a reference, signature, 

malaria, mosquito, ento-ecopepidemiological model  may result in overestimating the goodness of fit as measured by 

the Pearson coefficient, a statistic commonly employed in forecast, vulnerability, vector arthropod, aquatic, larval 

habitat  research for  optimally prognosticating eco-georeferenecable,geolocations of seasonal, hyperproductive, capture 

point, geo-spectrotemporal, geosampled foci. For larval control to be effective, it is crucial to maximize control efforts 

by targeting prolific habitats (Gu and Novak 2005).Ecogeograhically, iteratively, interpolating a target orthogonal, 

eigendecomposable,  LULC, endmember, sub-meter resolution, aquatic, larval habitat signature of an eco-

georeferenecable,  oviposition, mosquito, seasonal  foci, parameterizable estimator  may aid in geolocating unknown, 

hyperproductive, capture points in a sub-meter resolution, grid-stratified image.  

Conclusion 

In conclusion robust linear correlation estimates were generated from a PROC MIXED constructed regression 

which identified covariates of importance associated to prolific malaria mosquito, capture point, oviposition habitats at 

the Kemyan riceland agro-ecosystem study site.  To fit the model in PROC NL/MIXED, the REPEATED statement was 

used to specify the repeated measures factor, from the geosampled dataset of An. arabiensis , aquatic, larval habitat  

explanatory predictor covariates which identified observations that were correlated and their covariance structure. We 

constructed an oviposition, multinomial, sub-meter resolution, aquatic, larval, habitat, LULC, ento-endmember, 

signature, frequency, grid-stratified dataset of quantile distribution estimators which were tabularized employing a 

likelihood-free, Bayesian treatment for determining unknown, eco-georeferenecable, eco-geoclassfiiable, 

hyperproductive, malaria, mosquito, capture point, foci regressors  from an algorithmic, semi-parametric, 

autocorrelation, model. Subsequently a probabilistic matrix factorization was performed in which model capacity was 

controlled automatically by integrating over all the model hyperparameters for deducing capture point, Gaussian, LULC 

priors for geo-spectrotemporally, identifying unknown,  hyperproductive, aquatic, larval habitats of Anopheles 

arabiensis s.s., a malaria, mosquito vector, in Karima agro-village complex in the Mwea Rice Scheme in central Kenya.  

The objective function, was then minimized employing the method of steepest descent which was linear in the 

number of geosampled habitat observations. The dot product specific feature vectors were passed through the logistic 

function g(x)=1/[1+exp(−x)], which bounded the range of signature habitat predictions.We  employed a simple linear-

Gaussian model which made vulnerability  forecasts outside of the range of the known capture point values. As well, 

the ratings from 1 to K were mapped to the [0,1] interval employing the function t(x)=(x−1)/(K−1). This ensured that 

the range of the interpolatable, habitat, LULC values matched the range of predictions made by the model. Thus, 

p(R|U,V,σ2)=∏Mi=1∏Nj=1[N(Rij|g(UTiVj)σ2)]. Proprieties of the posterior distribution in the model, integrated the 

observed, Anopheles data conditioned on a categorical, outcome variable (i.e., immature density count). A generative 

model was devised where :b∼N(0,σb)a∼N(0,σW)zn∼ (W)xn∼p(⋅|β,zn)tn∼Weibull[log(1+exp(z
T
na+b)]k. The latent 

input zi came from a geosampled, An. arabiensis, capture point, regressed, LULC explanator. The seasonal, immature 

habitat, likelihood distribution was p(t|x)=∫zp(t|z)p(z|x)dz which  accounted for all the  noise in the sub-pixel, LULC, 

ento-epidemiological, eco-endmember paradigm employing the Bayes’ theorem.  In particular, a sequential Monte 

Carlo (SMC) algorithm that was adaptive in nature approximated a cloud of weighted, random, hyperproductive, 

seasonal, eco-georeferenced, capture point samples which were subsequently propagated over time. Quantile 

http://en.wikipedia.org/wiki/Method_of_steepest_descent%7C
https://en.wikipedia.org/wiki/Bayes%E2%80%99_theorem
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distributions were constructed based on a copula from the iterative, Bayesian, computation algorithms. An informative 

prior was generated. A 2-dimensional Gaussian-Hermite moments based on a set of orthonormal, eco-georeferenceable, 

LULC polynomials captured rotation and translation invariants in the malaria, mosquito, model which proved that the 

construction forms of geometric moment invariants were valid in the linearized combinations. The moments stored the 

capture point, LULC, image information with minimal redundancy.  A function was defined on an inner product space 

which possessed the rotation-invariant property. Since the moments were definable on the continuous domain, suitable 

transformations of the An. arabiensis, aquatic, larval habitat, endmember foci were needed to regressively quantitate 

these moments. Besides the discretization error derived from the approximation of various integrals, the inevitable 

uncertainty in the vulnerability forecasts were reconstructed with binary and gray-level, LULC images. The obtained 

results revealed the quality from Gaussian-Hermite moments were found to be superior than that from known Legendre, 

discrete Tchebichef and Krawtchouk moments. Habitat properties of the modified, eco-geoclassifiable, eco-

georeferenecd, capture point, grid-stratifiable, LULC, ento-endmember polynomials, specifically orthogonality and 

orthogonal invariance revealed an interval on the center of [-1,1] covered more zeros than did that on the edge of [-1,1]. 

A set of octiles was trialed as well as functions which exposed the unknown, hyperproductive, capture point, LULC 

geolocations with all symmetrical values (e.g. uncorrelatedness, scale, skewness and kurtosis) accounted for. The 

summary statement revealed a broad range of temporal trend derivatives in both the mean and variance. A computation 

of the probability of inclusion from the SMC output was specified. Variable selection was applied to the lags in the 

simulation, making it possible to infer the lag order from the time series, regressed, larval count, capture point, habitat 

signature data simultaneously with all the other geosampled, wavelength estimators.  

The   probability distribution  revealed capture point data conditional on a particular, discrete, aquatic, larval 

habitat, frequency, density, count value which was optimally devisable  by Np(μ, A), whence μ and A were normalized. 

It may be desirable to estimate θ under the quadratic loss L (θ, δ) = (θ − δ)tQ(θ − δ) whence geo-spectrotemporally 

regressively forecasting grid-stratifiable, malaria, mosquito, capture point, sub-meter resolution, sub-pixel,  LULC, 

signature covariates for precisely asymptotically targeting unknown, hyperproductive, eco-georeferenceable, seasonal 

foci. Sequential estimation of iteratable, capture point, vulnerability signature, LULC ento-endmember prognosticators   

of unknown, seasonal, An. arabiensis foci may reveal  risk factors  to malaria transmission based on a known, 

orthogonal, eigenfunction eigen-decomposable, sub-pixel,  LULC co-factor (e.g., Euclidean distance of a seasonal, 

prolific, aquatic, larval habitat, to the nearest, agro-irrigated, agro-village, remotely calculable, grid-stratifiable 

centroid), unless the eco-georeferenced geosampled count sequence is considered a realization of a random, zero-mean 

autocorrelated,  diagnostic, capture point variable. Intuitively geo-spectrotemporally explicating an eigen-

decomposable, eco-endmember, spatial filter, An. arabiensis,  vulnerability regression equation into main effects and 

interactions may satisfy the constraint R(θ, δ) ≤ tr(QΣ) + c, R(θ, δ). Although employing prime computing ratios of 

normalizing constants in common, measurable, space can define correlation and non-orthogonality in such frequency 

paradigms, the residuals may  not equate to causality in any krigeable, ento-endmember dataset of   synthetic, capture 

point, LULC signature  eigenvectors. Maximizing the log-posterior over an unmixed, empirical  eco-entomological 

LULC, endmember dataset of seasonal, eco-georeferenced. capture point, non-negatively autorrelated, sub-meter 

resolution, An. arabiensis, attribute features with hyperparameters (i.e. the observation noise variance and prior 

variances) and simulating the data in probability space may minimize the sum-of-squared-errors objective function 

employing quadratic regularization terms for prevention of overfitting. Here a parallelizable expectation-maximization 

algorithm was constructed which we found applicable to large-scale, sub-meter resolution, capture point, seasonal, 

malaria, mosquito, aquatic, larval, habitat, prognosticative risk, mapping applications.  Regardless, our main result in 

this research is that an Lipschitz map quantitated between separable quasi-Banach spaces is Fréchet differentiable Γ-

almost everywhere in an sub-meter resolution, grid-stratifiable, LULC, An arabenisis, eco-georeferenceable, capture 

point, eco-endmember, forecast vulnerability signature model provided that it is regularly Gˆateaux differentiable Γ-

almost everywhere in the model and the residual derivatives stay within a norm separable space of operators. It is easy 

to see that capture point, seasonal, malaria, mosquito, LULC, sub-pixel, signature, risk maps with the Radon-Nikodym 

property are Gˆateaux differentiable Γ. Moreover, Gˆateaux differentiability implies regular Gˆateaux differentiability 

with exception of another kind of negligible sets, (i.e., σ-porous sets). An eco-georeferenceable, eco-geoclassifiable, 

seasonal, hyperproductive, capture point, sub-meter resolution, An. arabiensis, eco-endmember, LULC, signature 

model is positive in every space in which every σ-porous sub-set is Γ-null. We show that this holds for C(K) with K 

countable compact, the Tsirelson space and for all subspaces of c0, but that it fails for Hilbert spaces 

https://en.wikipedia.org/wiki/Conditional_probability_distribution
https://en.wikipedia.org/wiki/Realization_(probability)
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The Bayesian framework allowed flexible model fitting, estimation, and mapping of all high risk 

georeferenced ,An. arabiensis, aquatic, larval habitats based on the field and remote-sampled parameters using a 

MCMC specification. By letting  V be a fixed positive definite matrix of size p × p in a robust seasonal predictive 

vector arthropod-related endemic transmission oriented risk model then, if n ≥ p,  and has a Wishart distribution with 

n degrees of freedom the reisudl forecast  had  a probability density function given 

by where Γp(·) is the multivariate gamma function defined 

In fact the above definition can be extended to any real n > p − 1. The 

model identified the sampled explanatory predictor covariate distance from the capture point as being significantly 

positively associated with prolific habitats based on sampled larval abundance counts. Incorporating  An. arabiensis 

larval habitats parameter estimates in a PROC NL’MIXED regression framework, a spatial filter analyses in SAS/= and 

a Bayesian GHLM in PROC MCMC can help generate accurate  operational field maps for  targeting prolific riverine 

habitat based on seasonal field-sampled count data  These models  can  quantitate seasonal An. arabiensis endemic 

transmission-oriented estimators employing (a) Gaussian residuals with input-dependent variance, or (b) non-Gaussian 

residuals with input-dependent variance, or (c) Gaussian residuals with constant variance. We prove the main criterion 

for Fr´echet differentiability of Lipschitz functions in terms of Γ-null sets for a sub-meter resolution, grid-stratified, An. 

arabiensis, aquatic, larval habitat,capture point, geo-spectrotemporal, ento-ecoepidemiological, eco-georeferenecable, 

LULC, eco-endmember model. We did so by introducing the following simple notion. Suppose that f is a seasonal, 

hyperproductive, eco-georeferenceable, forecast, vulnerability, capture point, eco-endmember  map from (an open set 

in) X to Y. Hence un-geosampled, seasonal, hyperproductive foci, capture point x would be a regular capture point of f 

only if for every v ∈ X for which f (x, v) exists, lim t→0 f(x + tu + tv) − f(x + tu) t = f (x, v) uniformly for u ≤ 1. Note 

that in the definition above it is enough to take the limit for t 0 only, since v by –v may be replaced in the model. A An. 

arabiensis aquatic, larval habitat Chebyshev polynomial of the first kind was related to the Bessel function of the first 

kind  and  the modified Bessel function of the first kind  by the 

relations Letting  allowed the Chebyshev polynomials of 

the first kind to be written as = =  

Our main result in this research is that an Lipschitz map quantitated between separable quasi-Banach spaces is 

Frechet differentiable Γ-almost everywhere in an oviposition, An arabenisis s,s, seasonal, grid-stratified, capture point, 

sub-meter resolution, signature  model provided that it is regularly Gˆateaux differentiable Γ-almost everywhere in the 

model and the  endmember derivatives stay within a norm separable space of operators. Further,  an eco-

georeferenceable, hyperproductive, capture point, sub-meter resolution, oviposition, An. arabiensis, grid-stratified, 

endmember, LULC signature model is positive in every space in which every σ-porous set is Γ-null.  

Appendix 1 

 Cramer’s Rule 

Given a system of linear equations, Cramer's Rule is a handy way to solve for just one of the variables without 

having to solve the whole system of equations. Instead of solving the entire system of equations, a researcher mayuse 

Cramer's to solve for just one single variable.For example, let us employ the following system of equations: 

2x +   y + z = 3  

  x –   y – z = 0  

  x + 2y + z = 0  

We have the left-hand side of the system with the variables (the "coefficient matrix") and the right-hand side 

with the answer values. Let D be the determinant of the coefficient matrix of the above system, and let Dx be the 

determinant formed by replacing the x-column values with the answer-column values. 

http://en.wikipedia.org/wiki/Probability_density_function
http://en.wikipedia.org/wiki/Multivariate_gamma_function
http://mathworld.wolfram.com/BesselFunctionoftheFirstKind.html
http://mathworld.wolfram.com/BesselFunctionoftheFirstKind.html
http://mathworld.wolfram.com/ModifiedBesselFunctionoftheFirstKind.html
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Then: 

system of 

equations 

coefficient 

matrix's 

determinant 

answer 

column 

Dx: coefficient determinant 

with answer-column 

values in x-column 

2x + 1y + 1z = 3  

 1x – 1y – 1z = 0  

1x + 2y + 1z = 0  
   

Similarly, Dy and Dz would then be:    

  

Evaluating each determinant, w 

e get: 

 

 

 

 

Cramer's Rule says that x = Dx ÷ D, y = Dy ÷ D, and z = Dz ÷ D. That is:x = 
3
/3 = 1,  y = 

–6
/3 = –2,  and  z = 

9
/3 = 3 To find 

whichever variable ("ß" or "beta"), a researcher must evaluate the determinant quotient Dß ÷ D. Hence given the 

following system of equations, find the value of z, then 

2x +   y +   z = 1  

  x –   y + 4z = 0  

  x + 2y – 2z = 3  
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To solve only for z, a researcher must  first find the coefficient determinant. 

 Then I will form Dz by replacing the third 

column of values with the answer column:  

 Then I will form the quotient and simplify:      Hence z = 2. 

Appendix 2.  

de la Vallée-Poussin theorem 

The de la Vallée-Poussin theorem on the distribution of prime numbers: Let π(x)π(x) be the number of primes 

smaller than xx; then, if x≥1x≥1, the following equality is valid: 

π(x)=li(x)+O(xexp(−Clogx−−−−√))π(x)=li(x)+O(xexp⁡(−Clog⁡x))where CC is a positive constant and li(x)li(x) is 

the logarithmic integral of xx. This theorem demonstrates the correctness of Gauss' hypothesis on the distribution of 

prime numbers, viz., as x→∞x→∞,π(x)∼xlogx .  

The logarithmic integra is a special function defined, for positive real , , by for  the 

integrand has at  an infinite discontinuity and the integral logarithm is taken to be the principal 

value The graph of the integral logarithm is given in the article Integral 

exponential function. For  small: The integral logarithm has for positive real  the series 

representation where  is the Euler 

constant.. 

 

Euler’s constant is number γ defined by 

γ=limn→∞(1+12+⋯+1n−lnn)≈0.57721566490…,γ=limn→∞(1+12+⋯+1n−ln⁡n)≈0. 

,considered by L. Euler (1740). Its existence follows from the fact that the sequence 

1+12+⋯+1n−ln(n+1)1+12+⋯+1n−ln⁡(n+1)is monotone increasing and bounded from above. The number-theoretic 

nature of the Euler constant has not been studied; it is not even known (2012) whether it is a rational number or not.In 

fact, a relation ∑n≤x1n−lnx=γ+O(1x) 

 As a function of the complex variable , is a single-valued 

analytic function in the complex -plane with slits along the real axis from  to 0 and from 1 to  (the 

https://www.encyclopediaofmath.org/index.php/Logarithmic_integral
https://www.encyclopediaofmath.org/index.php/Integral_exponential_function
https://www.encyclopediaofmath.org/index.php/Integral_exponential_function
https://www.encyclopediaofmath.org/index.php/Euler_constant
https://www.encyclopediaofmath.org/index.php/Euler_constant
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imaginary part of the logarithms is taken within the limits  and ). The behaviour of  along  is 

described by  

For  small: The capture point, asymptotic representation, for  large, is: 

 

The integral cosine has the series, explanatory, LULC, representation: 

 

 

As a function of the complex variable , , defined by (*), is a single-valued analytic function in the -

plane with slit along the relative negative real axis . The value of  here is taken to 

be . The behaviour of  near the slit is determined by the 

limits The integral cosine is related to the integral exponential 

function  by  function  is better known as the logarithmic integral. It can, of 

course, be defined by the integral (as above) for . 

The series representation for positive , , is then also said to define the modified logarithmic integral, and is the 

boundary value of , , . For real  the value  is a good approximation 

of , the number of primes smaller than   
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